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A gross Earth datum is a single measurable number describing some property of the whole Earth, such as
mass, moment of inertia, or the frequency of oscillation of some identified elastic-gravitational normal
mode. We suppose that a finite set ¢ of gross Earth data has been measured, that the measurements are
inaccurate, and that the variance matrix of the errors of measurement can be estimated. We show that some
such sets ¢ of measurements determine the structure of the Earth within certain limits of error except for
fine-scale detail. That is, from some sets ¢ it is possible to compute localized averages of the Earth structure
at various depths. These localized averages will be slightly in error, and their errors will be larger as their
resolving lengths are shortened. We show how to determine whether a given set ¢ of measured gross Earth
data permits such a construction of localized averages, and, if so, how to find the shortest length scale over
which ¢ gives a local average structure at a particular depth if the variance of the error in computing that
local average from ¥ is to be less than a specified amount. We apply the general theory to the linear
problem of finding the depth variation of a frequency-independent local elastic dissipation (@) from the
observed damping rates of a finite number of normal modes. We also apply the theory to the nonlinear
problem of finding density against depth from the total mass, moment and normal-mode frequencies, in
case the compressional and shear velocities are known.
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A. FORMULATING THE PROBLEM

1. INTRODUCGTION

In two recent papers (Backus & Gilbert 1967, 1968; hereafter called Inverse I and Inverse II)
we discussed techniques for extracting rigorous and geophysically useful conclusions about the
internal structure of the Earth from an finite set of measured gross Earth data, such as frequencies
of oscillation of normal modes, and seismic travel times between various sources and observers.
Both Inverse I and Inverse II were idealized in that observational errors were neglected. The
present paper is an examination of the effect such errors have on the conceptual question of what
geophysical information is contained in a given set of gross Earth data.

In describing briefly the results already obtained in Inverse I and Inverse IT we will use and
supplement the terminology introduced in Inverse II: an n-dimensional Earth model is an
ordered n-tuple of functions of position in the Earth, such as density, P-wave velocity and S-wave
velocity (n = 3). A radial Earth model is one which depends only on radial distance from the
centre of mass of the Earth, while a geographical Earth model also depends on latitude and
longitude. A gross Earth functional is any rule for assigning a single real number to each member
of a certain class of Earth models; examples are total mass, total moment of inertia, the frequency
of oscillation of a particular normal mode, and the travel time of a particular seismic phase from
a particular source to a particular observer. A gross Earth datum is the measured value of any
gross Earth functional for the real Earth. If ¢ is any finite set of gross Earth functionals gy, ..., g,
we say an Earth model m is ¢ @-acceptable’ if the calculated values of g,(m), ..., gy(m) agree with
the values vy, ..., Yy measured for the real Earth.

Whenever g is a gross Earth functional and m, is an Earth model, we say that a second Earth
model m is ‘g-near to m,’ if g(m) — g(m,) is calculable with good accuracy from the first Fréchet
derivative of g at my; i.e. if g(m) is calculable from g(m,) via first-order perturbation theory, the
contribution from higher order terms in m —m, being negligible. (The quantitative meaning of
‘good accuracy’ will depend, of course, on the accuracy of the observations v;, ..., ¥y, and the
errors we are willing to accept in interpreting those data.) If second or higher order terms in m —m,
make a significant contribution to g(m) — g(m,) we will say that m is ‘ g-far from m,’. Evidently if
g is linear then any two Earth models are g-near to one another. Given a finite set ¢ of gross
Earth functionals, we will say that Earth model m is ¢ @-near’ to Earth model m, if m is g-near to
m, for every gin 4. If mis g-far from m, for at least one g in ¢, we will say that m is ¥-far from m,).

Clearly, at each epoch the set of all measured gross Earth data is finite. In Inverse I we showed
that for any finite set ¢ of well-behaved (i.e. independent, Fréchet differentiable) gross Earth
functionals the set of %-acceptable Earth models is either empty or an infinite dimensional
manifold which, with any Earth model m,, contains an infinite-parameter family of Earth models
@-near to m,. We exploited this fact to automate the production of %-acceptable Earth models,
using Newton’s method in Banach spaces (Bartle 1955), and we gave some sample results of
machine calculations. Further results appear in Gilbert & Backus (1968). In short, Inverse I
was directed to the problem of producing ¥-acceptable Earth models.

Inverse IT was directed to the question of uniqueness. An obvious, unavoidable non-uniqueness
arises from the fact that given a finite set ¢ of gross Earth functionals, there is a lower limit to the
length scales of the structures resolvable by &. If m, is any %-acceptable Earth model and m is
any Earth model which averages to zero over all but extremely small length scales, then it seems
intuitively reasonable (and can be proved rigorously by the techniques of Inverse I) that m,+m

15-2
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will be @-acceptable, perhaps after a small distortion. Suppose that at some radius 7 this lack of
resolution is the only source of the diffcrences among the various %-acceptable Earth models.
Then there will be some smallest length / such that all ¥-acceptable Earth models have approxi-
mately the same average over an interval of length / at radius . We will say that ¢ has resolving
length / at radius 7.

In Inverse II we showed how to determine whether a given set 4 of linear gross Earth functionals
was capable of resolving structure near a given radius 7, and, if so, how to estimate the resolving
length of 4 at r. Thus, when the gross Earth functionals in & are linear and the corresponding
gross Barth data are measured without observational crror, Inverse 11 gives a complete solution
to the problem of non-uniquencss in geophysical data inversion.

When some of the gross Earth functionals in & arc nonlinear, and m, is any %-acceptable
Earth model, Inverse II shows how to learn whether there are %-acceptable Earth models m
which are @-near to m, and differ significantly from m, at all length scales, or whether all
%-acceptable modcls %-near to m, agree with m, cxcept for fine-scale detail. Neither Inverse 11
nor the present paper contributes to the question of whether there are %-acceptable Earth
models @-far from m,. If such models exist, at present we can scarch for them only by various
numerical scarch techniques described in Inverse I and Gilbert & Backus (1968), or by using the
Monte Carlo methods introduced by Kecilis-Borok & Yanovskaya (1967) and Levshin, Sabitova
& Valus (1966). At present we know of no practical method for cstablishing that a given set % of
nonlinear gross Earth functionals admits no @-acceptable models %-far from one another.*

In both Inverse I and Inverse II the errors in the data were ignored. In the present paper we
examine how such errors affect the resolving length of the data at various depths. We begin by
summarizing and simplifying the procedures described in Inverse II for extracting localized
information about the Earth from error-free data. Then we adapt the theory to data with error
statistics which are known or can be estimated. Finally, we illustrate the theory by applying it
to find dissipation (Q@~') and density as functions of radius in the Earth. In all the numerical
calculations rcported here, vy, and vy are assumed to be known. This assumption is unnccessary,
but dropping it triples our computations and forces us to use a machine memory larger than that
available at San Diego. We propose to report the results of the more cxtensive calculations in a
later paper.

2. EXTRACTING LOCALIZED AVERAGES OF EARTH MODELS
FROM A GIVEN SET OF ERROR-FREE GROSS EARTH DATA

Let @ be a finite set of gross Earth functionals, gy, ..., gy. Let vy, ..., ¥y be the observed values
of g, ..., gy for the rcal Earth; in this section we suppose that vy, ..., y» have been measured
without obscrvational error. If m, is the real Earth, we have g;(m;;) = vy,, ¢ = 1,..., N. The

* Press (1968), for a particular ¢, found six #-acceptable models among 5 x 10° randomly chosen models. He
proposcd, with some qualification, that this strengthened the suggestion that propertics common to his six @-accept-
able models arc common to all #-acceptable models. We belicve, on the contrary, that without some insight into
the structure of the manifold of #Z-acceptable modcls, Monte Carlo methods are not a practical way to preclude the
cxistence of #-acceptable models @-far from one another. The sct of Earth models under scrious discussion in the
current literature has at least 40 frce parameters (for example the first 15 Fourier components of p and v, and the
first 10 of v, or the values of p and v, at 15 radii and of v, at 10 radii). If the selection problem consisted merely in
picking the correct value of each parameter from among three possibilities, there would be 349, or 1019, different
Earth modecls to consider. In order to complete the calculations for 5x 10° models on a large, modern digital
computer within 20h of machine time, Press was forced to assume without verification that all his models were
@-ncar to a single specified model.

t Scec also Asbel, Keilis-Borok & Yanovskaya (1966).
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question is, what can we learn about my from the values of the N numbers g;(mg), ..., gy(mg).
In the present paper we will consider only one-dimensional spherical Earth models, so that my
is a single real-valued function of r. The extension of the theory to » dimensional geographical
Earth models is straightforward, but the computations become much more extensive.

(a) Linear gross Earth functionals
First let us examine the case that & consists entirely of linear gross Earth functionals g, ..., gy
We may assume without loss of generality that gy, ..., gy are linearly independent, since linearly
dependent functionals can be winnowed from % without loss of information. The fact that g,(m)
is linear in m implies the existence of a known function G;(r) such that for all m

g,(m) =f1m(r) Gy(r)dr. (2.1)

0
(Asin Inverse I and Inverse IT we choose units so that the radius of the Earth is 1.) The function
G,(r) will be called the ‘data kernel” for the functional g; and the datum y,. In principle, linearity
of g; requires only that G, be a distribution, or generalized function, but all the data kernels which
have arisen in contemporary geophysical measurements to date are integrable functions (see
Inverse I and Dahlen 1969), and for all functionals except travel times the data kernels are
square integrable.

Now my(r) describes the real Earth. We know about it only that it is one of infinitely many
%-acceptable Earth models m all satisfying

g(m) =y, (t=1,...,N). (2.2)
‘The known values of g;(my;) can be regarded as generalized moments of m, moments with respect
tothe data kernels. Of course from these finitely many moments alone we cannot hope to calculate
the separate values of my(r), but we might hope to calculate weighted averages of the values of
mg(r) at different r, with particularly heavy weighting close to some radius r, where we would
like to estimate mg(7,).
Any linearly weighted average of m(r) has the form

1
{m, Ay = f m(r) A(r) dr, (2.3)
0
where the weighting function 4 is unimodular; that is
1
f A(r)dr = 1. (2.4)
0

Any unimodular function will be called an averaging kernel; the terms are interchangeable. In
particular, we admit the possibility that some values of r will receive negative weights; i.e. we do
not demand that an averaging kernel be non-negative.

For which averaging kernels A(r) can we evaluate the averages {mg, 4), if we are given only
the observed values y; = g;(mg), ..., ¥y = gy(my)? It is clear from equations (2.1) and (2.2) that
if we let ay, ..., ay be any constants and define

N
A0) = 2 aG), (2.5)
i=
then for any %-acceptable Earth model m, including my, we will have

N
(m, 4} = '§1 a; Vs (2.6)
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Thus if 4 is any unimodular linear combination of the data kernels, we can compute {(my, 4)
directly from the gross Earth data. If 4 is not a linear combination of the data kernels, then it
was shown in appendix A of Inverse II that {(my, A) cannot be computed from the gross Earth
data when gy, ..., gy are linear functionals.

Now can we choose the coefficients ay, ..., ay in (2.5) so that A(r) not only is unimodular but
also has most of its weight concentrated near a particular radius 7, where we would like to have an
estimate of the local average (my), of my(r), averaged over some ‘resolving length’ /(r,) ? Can
we arrange that 4(r) in (2.5) have a tall, narrow peak centred near r, and very small values else-
where? Inshort,can we make 4(r) a good approximation to the Dirac delta distribution, §(r —r,),
so that {(m, A) is a good estimate of m(r,)?

In Inverse II we considered a number of different quantitative measures of the deviation of
an arbitrary unimodular function 4(r) from the ideal §(r—7,). In the present paper we shall
consider only one such measure, which we call the ‘spread of 4 from r,” and denote by s(r,, 4):

s(ro 4) = 12 (r=r* (7). (2.7)

Any unimodular function has the dimensions of an inverse length, so s(7,, 4) is a length. The
factor 12 is chosen to make s(r,, 4) a measure of the width of the peak in A(r) when 4(r) resembles
d(r—r,). Specifically, if / is any small positive number, let 4, ,, denote the unimodular step
function which is 0 outside the interval |r —7y| < 3/ and is /! inside that interval. Then, because
of the factor 12 in (2.7), s(ry, 4; ,,) = {. It is easy to verify that for other unimodular functions
4 with tall, narrow peaks centred at 7, and with small weight elsewhere, such as normal curves,
Cauchy distributions, linear and parabolic tent functions, etc., s(r,, 4) as defined in (2.7) is close
to other, more usual definitions of peak width.

For any fixed 4, s(ry, 4) is a quadratic polynomial in 7y with a minimum value at r, = ¢(4)
where

c(4) = f:rA(r)zdr / f :A(r)2dr. (2.8)

We will call ¢(4) the ‘centre’ of 4. By definition, the centre of 4 is that point from which the
spread of 4 is least. The spread of 4 from ¢(A4) we will call the peak-width of 4, or simply the

width’ of 4, written w(4): w(d) = s(c(A), 4). (2.9)
From (2.7) it is clear that for any 4 and 7, we have

510y 4) = w(A) +12[r, — c(A)]? :A(r)zdr. (2.10)

Thus the spread of 4 from 7, can be large either because the width of 4 is large or because the
centre of 4 is far from 7,.

To show that s(7y, 4) is a quantitative measure of the deviation of A(r) from &(r —r,) we will
show that s(ry, 4) is small if and only if {m, 4) is nearly m(r,) for all m which are well behaved in
a sense about to be described.

For any m(r) we define a norm ||m|,, as follows:

Iz, = [ |21 =)

r—"1,

2

dr. (2.11)

If 4 is unimodular then

G,y =m(r) = [ ) = m(rm)] A .
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If also ||m|,, is finite then Schwarz’s inequality implies
| <m, 4y —m(ro)| < ||mlly, [#55(ro, 4] (2.12)
Thus if {4,, 4,, ...} is a sequence of unimodular functions such that

lim s(ry, 4,) = 0 then lim (m,A4,) = m(r,).
n— o

n—> 0

To prove the converse, we consider the space %, of all functions m(r) for which |m|, < co.
On this space each unimodular function 4 defines a linear functional 2, ,, as follows: for any

min &, Dy, (m) = (m, Ay —m(r,).
According to (2.12), 9, ,, is bounded and its bound, ||2,,,,[, is no greater than [{#5s(r,, 4)]3. In
fact, if we take m(r) = (r—r,)2A4(r), then we have equality in (2.12), so

19 4,1l = [F55(ro A)12. (2.13)
Now if 4 does a uniformly good job of estimating m(r,) for all m in %, then |2, , | must be
small, so s(ry, 4) must be small. If {4,,4,,...} is a sequence of unimodular functions with the
lim MAw =mn) _
n—e lm],,

uniformly for all m in ., , then lim s(r,, 4,) = 0. We conclude that an averaging kernel 4 makes

$(ry, A) small if and only if, for that 4 and all m in %, {m, A) is uniformly close to m(r,) when
measured in units of |m|,,.

property that

In Inverse II we fixed r, and sought that unimodular linear combination of the N data kernels
which has the smallest spread from 7,. We denoted this optimal averaging kernel by 4, (r), and
its coefficients in (2.5) by a,(7,), ..., ay(r,). If inspection of the graph of 4, (r) shows it to be
a good approximation to d(r —7,), or, what is the same thing, if s(r), 4) < 1, then the (m, 4, )
defined by (2.3) and calculated from (2.6) will be, roughly speaking, an average of m(r) over an
interval of length w(4,,) centred on ¢(4,,) and therefore near r,. It is no distortion of language to
call {m, 4, ) a local average of m near r, with resolving length w(4,,). On the other hand, if 4,
is not highly peaked near r,, or, what is the same thing, if s(r,, 4,,) is not much less than 1, then
we can conclude that the given gross Earth data do not enable us to compute an average of m(r)
which is any sense localized near r,. At this particular depth the data admit other ambiguities
of interpretation besides the expected lack of fine-scale resolution.

Now we introduce appropriate terminology. Let ¢ be a set of linear gross Earth functionals
with data kernels G, ..., Gy. Let 4, minimize s(r), 4) among all unimodular linear combinations
4 of the data kernels. If s(ry, 4,)) < 1 we say that ¥ mean-determines mg, the true Earth, at r,,
and that ¢ is mean-decisive at r,. If s(r,, 4,,) is not much less than 1, we say ¢ is mean-indecisive
at 7,. If & is mean-decisive at all 7, we call ¢ simply mean-decisive. In Inverse II, we gave
examples of mean-decisive and mean-indecisive sets of gross Earth data.

(b) Nonlinear gross Earth functionals
If the gross Earth functional g; is nonlinear, then (2.1) is no longer correct. We replace that
equation by the assumption that g; is Fréchet differentiable. This means that for any Earth
model m(r) there exist functions G,(r), ..., Gy(r) with the property that if m’(r) is any other Earth
model then fori =1,..., N

gi(m') = gy(m) + j [ (1) = m()1 Gylr) dr + O . (2.14)
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We will call G, the ‘data kernel for the functional g; at the Earth model m’. In the nonlinear case
these data kernels are different for different models m. Inverse I shows that all the usual gross
Earth functionals are Fréchet differentiable, and gives the data kernels at radial Earth models.
Dahlen (1969) gives data kernels at some non-radial, geographical Earth models.

Even in the nonlinear case, for any Earth model 7 we can still construct averaging kernels 4,
unimodular linear combinations of Gy, ..., Gy, the data kernels at m. Equation (2.6), however,
will no longer be true. If 4 is given by equation (2.5), then equation (2.6) must be replaced by

(m Ay = 3 a;qs (2.15)
i=1

1
where we define q; = f m(r) G;(r) dr. (2.16)
0

Only when g; is a linear functional do we have ¢; = g;(m).

If 4 is a unimodular linear combination of the data kernels at m, and if m and m’ are both
%-acceptable Earth models, (m, 4) can differ from {m’, A) if some of the functionals in ¥ are
nonlinear. However, the difference is of second order in (m’—m). To see this we note that if
m and m’ are both #%-acceptable then g;(m) = g,(m’), so, from (2.14),

1 1
j m'(r) Gy(r) dr——f m(r) Gy(r)dr = O(m' —m)?2.

0 0
If we multiply this equation by ¢; and sum from 7 = 1 to N, we obtain

(m', Ay = (m, A = O(m' —m)?, (2.17)
where 4 is given by (2.5). Equations (2.15) and (2.17) imply that

N
m',A) = X a;q;+0(m' —m)2. (2.18)
i=1

According to equation (2.17), if m’ is ¥-near to m then to a good approximation m’ and m have
the same averages with respect to any averaging kernel 4 which is a linear combination of the
data kernels at m. Thus if m is a -acceptable Earth model and mg, the real Earth, is ¥-near to m,
then to a good approximation we have {mg, AY = {(m, A) for any such averaging kernel 4.
Therefore, we can obtain a good estimate for any average (my, 4) whose averaging kernel 4 is
a unimodular linear combination of the data kernels at an Earth model m which is Z-near to my.

Let m be any particular Earth model, and let G, ..., Gy be the data kernels at m. Suppose that
whenever an Earth model m’ has g;(m’) = g,(m) for every g, in &, then m’ is %-near to m. In that
case, we will say that ‘¥ isolates m’. If m is %-acceptable and ¥ isolates m, then my, the real
Earth, is #-near to m, so {m, 4) is a good estimate for the average {(my, 4) as long as 4 is a linear
combination of Gy, ..., Gy.

Let 4, be that averaging kernel which minimizes s(ry, 4) among all unimodular linear com-
binations of Gy, ..., Gy, the data kernels at m. If s(r), 4,) < 1 wesay that & is ‘mean-decisive at m
near r,’. If 5(r,, 4,,) < 1 for all r,, we say that ¢ is ‘mean-decisive at m’.

If mis a -acceptable Earth model, and ¢ isolates m, and ¢ is mean-decisive at m, then among
the averages (mg, A) for which the data give good estimates are averages localized near every
radius 7,. In this local average sense, the gross Earth data described by ¢ determine the real
Earth,
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Neither Inverse II nor the present paper contributes to determining whether a set ¢ of non-
linear gross Earth functionals isolates a particular Earth model. Both papers are directed to
determining whether ¢ is mean-decisive at particular Earth models. That is, in both papers we
study the manifold of all ¥-acceptable Earth models near a particular model; we do not attempt
to delineate the overall global structure of that manifold in Hilbert space. If we find that ¢ is
mean-decisive at a %-acceptable model m, then we can regard the computed local averages
{m, 4,,) as estimates of the true local averages {my, 4, ) only if we assume that m is ¥-near to m.
For convenience, we shall make this assumption throughout the present paper, but it is essential
to keep in mind that if there are two %-acceptable Earth models which are %-far from one
another, then without more data we cannot say which model resembles the real Earth. Of course
if all the functionals in ¢ are linear, then every Earth model is ¥-near to m; ¥ isolates every
Earth model.

(¢) Algebraic statement of the problem of extracting local averages from
error-free gross Earth data -

We are given a finite set ¢ of gross Earth functionals and perfectly accurate measurements of
the corresponding gross Earth data. In the linear case, ¢ alone determines a set of data kernels,
Gy, ..., Gy. In the nonlinear case, we fix a %-acceptable Earth model m and obtain the data
kernels for gy, ..., gy at m. Then we define

Uy = f:Gi(r) dr, (2.19)

1
S = 12f r2Gy(r) Gy(r) dr,

1
and Sii(ro) = ].2J‘0 (r—19)2 Gy(r) G;(r) dr. (2.20)

Clearly Sij(re) = 1588 — 2y S + 8. (2.21)

The N x N matrices S and S;;(r,) are symmetric, and the linear independence of G, ..., Gy
(already noted in the linear case and assumed henceforth for nonlinear gross Earth functionals)
assures us that S and S;;(r,) are also positive definite.

The condition on a;, ..., ay which makes an averaging kernel (2.5) unimodular is

N
Yau; =1 (2.22)
i=1

The spread of the averaging kernel (2.5) from 7, is

N
§(ro3 @ys evsay) = '21 a;a;845(7o)- (2.23)
i,7=

The centre of that averaging kernel is

N N
1 ()
(@, .ray) = X aiajséj)/ > aiajSij)a (2.24)
) . . 4,7=1 i,j=1
and its width is
N o N o2 X .
w(ay, .. ay) = 3 aiajSij‘—[ > aiajSH)] X a0 8. (2.25)
i,j=1 i,7=1 t,=1

For a fixed r,, the optimal averaging kernel 4, is that unimodular linear combination of the
data kernels which minimizes s(ry, A). Thus 4, is obtained by inserting in (2.5) that N-tuple of

16 Vol. 266. A.
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132 G. BACKUS AND F. GILBERT

coefficients (ay, ..., ay) which minimizes the positive-definite quadratic form (2.23) subject to
the constraint (2.22). The solution was given in Inverse I1. The value of {m, 4, ) is computed
from (2.15); when all the functionals in # are linear this is equivalent to (2.6).

3. EXTRACTING LOCALIZED AVERAGES FROM ERRONEOUS GROSS EARTH DATA

So far we have assumed that the gross Earth data vy, ..., yy were measured with perfect
accuracy. Once an averaging kernel 4 of the form (2.5) was constructed, the average (2.3) of m
with respect to that kernel could be computed without error, via (2.6) when all the functionals
in 4 were linear, and via (2.15) when some were nonlinear. Of course the gross Earth data will
never be free of errors, but if we know the statistics of the errors then the theory of the propagation
of errors gives us the statistics of the resulting error in {(m, 4.

The presence of errors in the data, however, may change our idea of what an optimal averaging
kernel should be. The choiceof ay, ..., ayin (2.5) which produces 4, , the available averaging kernel
most nearly like 8 (r —r,), may also produce very large amounts of cancellation in (2.6) or (2.15).
Then any fractional errors in vy, ..., vy will produce much larger fractional errors in {m, 4, ».
We must investigate whether there are coeflicients ay, ..., ay which produce via (2.5) an averaging
kernel 4 only slightly less than optimally like & (r —7,), and which greatly reduce the cancellation
n (2.6), so as to give us greatly improved accuracy in {m, 4). Very inaccurate knowledge of a
very highly and accurately localized average of my, is not particularly useful. We are willing to
sacrifice some resolution in the local average if we can greatly improve the accuracy with which
we know its value.

(a) Expressions for the errors and their statistics

If we make errors Ay, ..., Ayy in measuring the gross Earth data vy,,..., yy, what error
A{mg, Ay will result in our value for {my, A) when 4 is given by equation (2.5)? In case all the
gross Earth functionals in ¢ are linear, we will compute {mg, A) from (2.6), so we have
immediately

N
Almy, 4) = '21 a; Ay;. (3.1)
1=

In case some functionals in ¢ are nonlinear, we must suppose that our ‘%-acceptable’ Earth
model m has values of g;(m) which agree with the erroneous gross Earth data, since only those
data are available to us. The functions G; are data kernels at m, and our averaging kernels 4 in
'(2.5) are linear combinations of those data kernels. We would like to know {myg, 4>, but we
know only {m, A). The error, A{my, A) = {m, A) — {my, A), is

Ay, A = z a f [m(r) — me(r)] Gy(r) dr (3.2)

If y¥ is the true value of vy, for the Earth, our error of measurement is Ay, = y, —yE. If my is
%-near to m, then from (2.14)

7o = [ mr) = ma(r)] Gutr) (.3)

@-nearness means simply that we can neglect the second-order term in (2.14). Then, combining
(8.2) and (3.3) we obtain (3.1) even in the nonlinear case. Thus as long as our %-acceptable
Earth model m is -near to the true Earth model my, equation (3.1) is valid to first order in
m —my whether the functionals in 4 are linear or not.
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Of course we do not know the errors Ay; (if we did, they would not be errors; we would remove
them), but as in any error analysis we may assume that by repeated measurements of yy, ..., Yy we
have learned something about the statistics of the errors. We will assume that the N-tuple of
errors of measurement (Ayy, ..., Ayy), has a probability distribution whose mean is (0,0, ..., 0)
and whose second moments exist. That is, we assume that

Ay = Ay =0

and that the averages (expected values)

E; = (Ay,) (Ay)) (3.4)
exist. The N x N variance matrix E;; is clearly symmetric and positive semidefinite (Cramér
1946). We assume that no linear relation among Avy,, ..., Ayy is automatically satisfied in all
measurements of ¥y, ..., Yy. That is we assume that the N-tuples (Ay,, ..., Ayy) are not restricted
to lie with probability 1 in a subspace of dimension N — 1. Then the matrix E; is positive definite.

We also assume that we have an estimate of E;;, and henccforth we will not distinguish between

L
our cstimate and the truc variance matrix, so we will assume that the whole N x N matrix E;;
is known.
For any choice of coefficients a,, ..., ay in (2.5) we can use (3.1) and (3.4) to write down the

variance (A{my, A))? of the crror in our estimate of {m, 4):

[ N

(Almy, 4))* = 3 a;0,E;;.

=1

Then we may use the square root of this variance as an estimate of the error € which we commit
when we compute {my, 4> from the gross Earth data by means of (2.6) or (2.15). Since we know

E;, this error is completely determined by the coefficients a,, ..., ay, so we may write it as

N
G(al, ey alv)z = X ZlaiajEij. (3.5)
)=

(b) Choosing optimal averaging kernels for erroneous data

We can now give a quantitative proposal for choosing averaging kernels (2.5) when the gross
Earth data contain errors. We fix 7, and find that averaging kernel 4, which, among all uni-
modular lincar combinations of the data kernels, minimizes s(ry, 4). The cocfficients of 4, in
(2.5) we denotc by a,(r). We suppose that s(ry, 4,,) < 1so that {m, 4, ) is indced a local average
of m, localized near r,. The error in {my, 4, > produced by estimating it as {m, 4, », has a variance
€2 given by substituting a,(r,) in (3.5).

Suppose we feel that this variance is unacceptably large. To reduce it, we agree to accept
averaging kernels (2.5) with spreads from 7, slightly greater than s(ry, 4,) but still much less
than 1. This mecans that we choose a number s larger than s(ry, 4,,) but much less than 1 and we
agrec to accept any averaging kernel (2.5) whose coefficients ay, ..., ay satisfy (2.22) and

N
2 a;a;8; < 5. (3.6)
=1

(Here and subsequently we write S;; for S;;(r,) when no ambiguity is possible.) Among these
acceptable averaging kerncls will be some with values of €(ay, ..., ay)? smaller than €. Which
acceptable averaging kerncl produces the smallest such error? That is, which N-tuple of

16-2
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coeflicients ay, ..., ay satisfying (2.22) and (3.6) minimizes ¢(ay,...,ay) as defined by (3.5)?
This is the algebraic statement of the problem of decreasing the crror variance in {my, 4) by
permitting the spread of 4 from 7, to increase above its least possible valuc, s(r,, 4,).

We hold 7, fixed, and in the case of nonlinear gross Larth functionals we restrict attention to
Earth models @-near to a particular %-acceptable model m, at which we compute the data
kernels Gy, ...,Gy. Then u,, §;; and E;; are all fixed. If we specify s, then the minimum of
¢(ay, ..., ay) under the constraints (2.22) and (3.6) is determined as a function of s alone, say ¢(s).
If we increase s, then the set of N-tuples which satisfy (2.22) and (3.6) will increase. The minimum
value of (3.5) over the larger, inclusive set is certainly no greater than its minimum over the
smaller, included set, so if s; < s, we infer that e(s;) > €(s,).

There remains the question of how we agree on some number s as an acceptable spread from 7,
for our averaging kernels. Clearly our choice of s will depend on what the given gross Earth data
permit. To make the choice, we must know how much accuracy we gain for a given increase in
spread from 7,. That is, we want to know the whole function €(s). Then we might use different
values of s for different purposes. The situation is very like that of spectral analysis of stationary
time series, where very narrow spectral windows produce large uncertainty in the spectral esti-
mates (Parzen 1962), and the choice of window is different for different applications. We will
call the graph of e(s) the absolute error tradeoff curve at r,, since it tells us how much we can
decreasc the absolute error € in our cstimate of an average of m, at r, by permitting the resolving
length s of that average to increase.

Finally we note a second way to formulatec our problem. We could choose a number ¢ > 0 and
refuse to consider any averaging kernels (2.5) unless they satisfied

g: a;0; Ly < 62, (8.7)
=1
That is, we could restrict attention to averaging kernels 4 such that {my, 4) could be computed
from the data with an error variance no greater than ¢2. Then the problem would be to find
among such kernels the one with least spread from 7, We would seck the coefficients a,, ..., ay
which minimize s(ry; 4y, ..., ay) in (2.23), subject to the constraints (2.22) and (3.7). This minimum
spread would be a function of ¢,say s(€). Evidently s(¢) is a monotone non-increasing function of e.
In § 5 we will see that the two formulations of our problem lead to the same averaging kernels
and that s(¢) is the function inverse to €(s). In this sense, the two formulations are equivalent. We
prefer and will use the first formulation, with s, the spread from 7,, as the independent variable.

(¢) Relative ervors

Instead of minimizing the absolute error e(ay, ..., ay) in {my, A) subject to the constraints
(2.22) and (3.6), we could just as well minimize the relative error p defined by

pE = (Admy, A))%/(my, A2
If we estimate (my, A4) as {m, A) then from (2.15) and (3.5) we have
vV N 2
play, ..., ay)? = ) ZlaiajEij/[.Zlai(h] . (3.8)
B4 = b=

Usually we would expect minimizing p to have nearly the same effect as minimizing ¢, but if the
constraint (3.6) is sufficiently weak we will sce that differences arc possible. At any rate the
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question must be investigated. We denote by p(s) the minimum value of p(ay, ...,ay) when
(@y, ..., ay) is subject to the constraints (2.22) and (3.6). We will call the graph of p(s) the relative
error tradeoff curve at 7,.

(d) The effect of variations in the observational errors

Suppose two different observers measure the same gross Earth data with different instruments or
different skills, so that they produce different error variance matrices E{) and E{?. How will
their error tradeoff curves be related? The two observers use the same gross Earth functionals, so
they have the same u; and ;. Since e(s) and p(s) are defined as the minima of (3.5) and (3.8)
subject to the constraints (2.22) and (3.6), it is easy to compare the two observers; we are mini-
mizing their absolute and relative errors under the same constraints.
For example, if E{? — E{}) is positive definite, then
€d(ay,...,ay) > eV(ay,...,ay) and p®(ay,...,ay) > pP(ay,...,ay)

for any N-tuple (ay, ..., ay). Since €(ay, ..., ay) is continuous and the set of N-tuples satisfying the
constraints is compact, €®(s) > e®(s). Similarly, p®@(s) > p®(s) with strict inequality unless
pO(s) = +o0.
In case there is a constant £ such that E{? = k2E{ then clearly
€d(s) = keM(s) (3.9)
and PO(s) = kpW(s). (3.10)
These results are particularly noteworthy. They show that the shape of the absolute or relative

error tradeoff curve depends only on the ratios of the matrix elements E;; and not on their
absolute sizes. Evidently the same is true of the optimal averaging kernels at 7, for any particular s.

B. ABSOLUTE ERRORS
4. THE GEOMETRY OF ABSOLUTE ERRORS

This section is devoted to developing a more compact notation for and some geometrical
insight into the problem of minimizing the absolute error in {my, 4) subject to the constraints

(2.22) and (3.6).
(a) Notation

We regard the ordered N-tuple (a, ..., ay) as a vector a in the N-dimensional real vector space
2N consisting of such N-tuples. We define an inner (dot) productin theusualway:if f = (f,, ..., fy)
and g = (g, -.-,8y) then N
f-g =i§1ﬁgi‘ (4.1)
If we write u for the N-tuple (u,,...,uy) defined by (2.19), then the constraint (2.4) or (2.22)
becomes u.a=1. (4.2)

Any N x N matrix K;; defines a linear operator, K: Y - %% as follows: K sends the vector a
into the vector K .a whose ith component is

(K.a); = '§1 K;ja;. (4.3)
i=

If K;; is symmetric and positive definite, so is K. Thus the matrices E;; of (3.4) and S;; of (2.20)
define symmetric, positive definite linear operators E: #N - %N and §: #N - %N,
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Following Gibbs (1901) we regard linear operators as second-order tensors. Then K.a can
be interpreted as the dot product of a second order tensor on the left with a first-order tensor on
the right. If K7 is the transposc of K then

a.K=K7".a,

so if K is symmetric, i.e. if K¥ = K, thena. K = K .a. The symbol K. L will denote thc tensor dot

product, N
(K. L)ij = kélKikij;

then K. L is also the linear operator which arises from applying L to a vector and K to the result.
In this notation the constraint (3.6) becomes

a.S.a<s, (4.4)
and (3.5) becomces ¢@?*=a.E.a. (4.5)

We seck that @ which minimizes the e(a)? in (4.5) subject to the constraints (4.2) and (4.4). We
denote the minimum by €(s)2.

Names will be required for several different sets of points a in #V. If K is a positive dcfinite,
symmetric operator and £ is a positive number, we denote by &' (K, k) the sct of all points @ in %V

which satisfy a.K.a<k (4.6)

This set is an NV dimensional solid ellipsoid centred on the origin. Its boundary is the (N —1)
dimensional cllipsoidal hypersurface consisting of all points @ which satisfy

a.K.a=k (4.7)

We denote this boundary by 0¢'(K, k). The interior of 6'(K, k), denoted by 6°(K, k), is the set of

all points @ which satisfy a.K.a<k (4.8)

For any a on 96’ (K, k) the vector ng(a) =K.a (4.9)

is half the gradient of a. K.a with rcspect to a and hence is normal to the boundary surface
06 (K, k) at a, and points out of & (K, k).

(b) Strict convexity of ellipsoids
For our purposes the most important property of & (K, k) is given by
Lemma 1. If k > 0 and K is symmetric and positive definite, then & (K, k) is strictly convex.
By this we mean that if @, and a, are two different points in (K, k) and a is any point between
a, and a, on the straight linc segment joining a, and a,, then @ is in 6°(K, k). The proof'is simple.
There arc positive numbers a; and «, such that

ata,=1 (4.10)

and a = a0, +a,a,.
Since K is symmetric,

a.K.a=dia,.K.a,+2a,0,a,.K.a,+aa,.K.a,.
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Since K is positive-definite, Schwarz’s inequality implies
|a,.K.a,| < (a,.K.a,)} (a,.K.a,)},
with equality only when a, and a, are linearly dependent. Thus
a.K.a <[a(a,.K.a,)} +a,(a,.K.a,)t]?, (4.11)

with equality only when @, and a, arc linearly dependent. Now we must consider three cases:

(i) a,and a, are in (K, k) and at least one of them is in &°(K, £). Then by (4.10) the right
side of (4.11) is strictly less than £, so @ is in &°(K, k).

(i1) a, and a, are both in 96 (K, k) but are linearly independent. Then the right side of (4.11)
is equal to £, but the inequality in (4.11) is strict, so again @ is in &°(K, k).

(ii) @, and a, are both in 0& (K, k) and are linearly dependent. Then

a,=«ka, and a,.K.a,=a,.K.a,
so k2 = 1. Since a, % a,, we must have a, = —a, and a = (a, —a,)a,. Then
a.K.a= (a;—0ay)k <k,
so again @ is in §°(K, k).
(c) Hyperplane sections of ellipsoids

Now for any non-zero vector f in ZY and any real number z we denote by #( f) the (N—1)
dimensional affine hyperplane consisting of all points @ in £¥ which satisfy f.a@ = z. Evidently
H(f) is convex. We abbreviate J#(f) by 5#(f). For any two sets &/ and # we denote by
<7 9 their sct-theoretic intersection, consisting of all points common to both &/ and 4. Then

we define
E(f, K, k) = #(f) n & (K, k),
o8 (f,K, k) = € (f) no& (K, k), (4.12)
ES, K K) = H(f) n 6K, ).

The set &(f, K, k) consists of all points a satisfying (4.6) and f.a = 1, while a&( f, K, k) consists of
all points a satisfying (4.7) and f.a = 1, and °(f, K, k) consists of all points a satistying (4.8) and
f.a = 1. Since the intersection of two convex sets is convex, both &(f, K, k) and §°(f, K, k) are
convex. Moreover, from Lemma 1 we have immediately

LemMa 2. Ifk > 0 and K is symmetric and positive definite and f is not the zero vector then &' (f, K, k) is
strictly convex.

Intuitively, &(f, K, k) is an (N —1)-dimensional solid ellipsoid in #°(f) and o€ (f, K, k) is its
(N — 2)-dimensional boundary surface, while &°(f, K, k) is its interior. For a fixed non-zero f
and fixed positive definite, symmetric K we must study the family of ellipsoids &'(f, K, £) para-
metrized by £. Geometrical intuition suggests that if £ is sufficicntly small then & (K, k) is confined
so close to the origin that it has no points in common with 5#( f), but that as £ increases from 0 it
reaches a value k,,;, for which &(K, k,;,) touches 5#°(f) at a single point of tangency, a, x. If
k < ki €°(f, K, k) is empty, while if & > £, 6°(f, K, k) is non-empty, has a;, x as its centre,
and grows with £.

It is casy to verify these conjectures. If &(K, ky,) is tangent to #°(f) at a,, x then f must be
parallel to the normal to & (K, kp,,) at @y, x. From (4.9) it follows that there must be a constant «

such that
K.a; x = «f. (4.13)
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Since K is positive definite, it has an inverse. Then, using f.a, x = 1 we can write immediately

K-.f

aﬁ K =f—“. K_l .f (4. ] 4)
1
and kmin = af; K.K.af,K =F‘K_1'f. (4.]5)
Now any a in #(f) can be written in the form
a=a;x+b, (4.16)
where f.b=0 (4.17)

and b is uniqucly determined by a and equations (4.16) and (4.17). From (4.14), (4.16) and
(4.17) we infer immediately that

a.K.a=k_ +b.K.b, (4.18)

min
where £, is given by (4.15). Because K is positive definite, it is now clear from (4.18) that
&(f, K, k) is empty if k < kp,,, while &(f, K, ky,;,,) consists of the single point ay , and if k > £,
then &°(f, K, k) is non-empty and is centred on the point described by b = 0,0r a = a; . Itis
also clear that when a is confined to ##(f) then the least value of a.K.a is &, and occurs at
a; x. Figure 1 depicts the geometry for N = 3.

/ ng(a)

K,k ..)

» “min

206/

ke kmin’ 0{:(,(’ k)

TFicure 1. Illustration of the notation for hyperplane scctions of ellipsoids in the case N = 3.

If ais any point on 0¢ (K, k), we know that ng(a) in (4.9) is an outward normal to 06’ (K, k) at a.
If a is on 0&'(f, K, k) then the orthogonal projection of ng(a) onto #°(f) is an outward normal
to 9&(f, K, k) lying in (i.c. tangent to) the hyperplane #°( f). This orthogonal projection is

(I-ff).nx(a) = (I-ff).K.a, (4.19)

where Iis the identity tensor in 2 and fis f/(f.f)?}, the unit vector in the direction of f. Figure 1
shows the geometrical situation for the special case N = 3.

All the foregoing remarks about &'(f, K, k) apply verbatim to &(u, S,s) and &' (u, E, €%). Thus

we have
S1.u
% = u S (4.20)
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1
smin=aS'S'aS=u.S~1.u’ (4.21)
(I—ad).ng(a) = (I-0d).S.a, (4.22)
E-l u
and aE = m, (4.23)
1
efnin =dag. E.aE = m, (4.24)
(I-ad).ny(a) = (I-ad).E.a. (4.25)

In the foregoing equations and subsequently in this paper we abbreviatea, gsand a, pasagand ag.
Itis understood that S depends on 7, but we regard r, as fixed and so do not show this dependence
explicitly.

(d) Elementary remarks about e(s), the tradeoff curve between absolute error and spread

We can now reformulate in geometrical terms the problem of minimizing e(ay, ..., ay), as
defined by (3.5), subject to the constraints (2.22) and (3.6). We simply seek the greatest lower
bound, e(s), of the values of the function ¢(a) defined by (4.5), when a is confined to &(u, S, s).
If s < Spins we have seen that &'(u, S, s) is empty, and we will agree that the greatest lower bound
of the empty set is + co. There simply are no unimodular linear combinations of the data kernels
whose spread from 7, is less than s ,.

If s = smin then & (1, S, smin) consists of the single point ag which produces, via (2.5), the optimal
averaging kernel 4, considered in Inverse II. The error variance for {mg, 4, is

€(smin)? = as. E . ag,
which we abbreviate as emax2.

If's > smin then €(s)?is finite and non-negative. If s, < s, then &(u, S,s,) < &(u, S, 5,) so €(s) is
a monotonically non-increasing function of s. In particular, €(s) < eémax whenever s > smin. As
s increases, &'(u, S,s) expands outward from ag in 5#(u), and e(s) steadily decreases (so far we
have proved only that it never increases). Eventually, s becomes large enough that 96 (u, S, s)
reaches ag. The value of s at which this occurs we call smax; clearly

Smax = aE‘ S. aE'
But ag. E.ag is €him, the least value which a. E.a takes anywhere in 5 (u). If s > smax then ag
isin &(u, S,s), so the minimum value of a. E.a in &(u, S, s) is €hin. If s > smax, then €(s) = émin.
Willingness to accept averaging kernels 4 whose spread from r, is larger than smax does not

enable us to reduce the error variance in {mg, 4).
We can summarize these remarks as follows: we have

Smin = @g.S.ag = (u.S71.u)7, \

(4.26)
€]2nin = (IE. E.aE = (u. E—l.u)—l,

u. S E.S.u

(u. 81 u)?
If s < Smin, €(s) = +00. If § = Smin, €(5) = €max. If Smin < § < Smax then €(s) is monotonically non-
increasing and lies between €max and émin. If s = Smax, €(5) = €min.

2
ema,x = as. E.aS =

17 Vol. 266, A,
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Evidently the only interesting range of s is Smin < § < Smax. What if smin = Smax? Then from
(4.20), (4.23) and (4.26) we have

(ag.S.ag)? = (ag. S .a5) (ag. S.ag).

Since § is positive definite, it has a Schwarz inequality (Halmos 1958), so this last equation
implies that ag and ay are linearly dependent. Since they are both in S (u) they are equal.
Similarly, émin = €émax if and only if a; = ag. In the very unlikely event that a; = ag, the presence
of errors in the data will have no influence on our choice of an optimal averaging kernel (2.5).
We will have €(s) = émin for all s > smin, and for any s > smin the optimal 4 is 4,,, its coeflicients
in (2.5) being the components of ag.

In §§ 4 and 5 we will assume that ag & ag, so that smin < Smax and émin < €max.

(e) The complete geometrical theory of €(s)

We have already discussed e(s) for all s except those in the open interval smin < 5 < Smax. Now
we consider this interval. We will prove from the geometry of hyperplane sections of ellipsoids
that e(s) is a continuous, strictly monotonic decreasing function on the closed interval
Smin < § < Smax. We will also give a geometrical description of &'(u, S, s) and & (u, E, ¢(s)%) which
enables us to calculate €(s). All these results stem from

LemMa 3. If smn < s then 8(u, S,s5) n & (u, E,e(s)?) contains exactly one point, which we denote by
a(s). This point lies on 98 (u, E,e(s)?). When smin < § < Smax, @(s) also lies on 98 (u, S,s), and
consequently is a point of external tangency of those two ellipsoids.

Progf. Suppose that a, and a, are different points in &(u, S, s) n &(u, E, ¢(s)?). Let
a' = }(a,+a,). According to lemma 2, @’ isin £°(u, S, s) n &%(u, E, ¢(s)?). But then the facts that
a'isin &(u, S,s) anda’. E.a’ < ¢(s)? contradict the definition of e(s). Thus

contains at most one point. Now &'(u, S, s) is compact and a. E.a depends continuously on a, so
there is at least one point in &(u, S,s) where a. E.a assumes its greatest lower bound, e(s)2.
Evidently this point lies in &'(u, S, s) n & (u, E, €(s)?), so it is the unique point in that intersection
and we may call it a(s) without ambiguity. Evidently a(s) is in 068 (u, E, e(s)%). When s > sy,
clearly a(s) = ag, but when s < smax this is not so. If a(s) # ag then in every neighbourhood
(relative to &£ (u)) of a(s) there are points @’ where a’. E.a’ < ¢(s)% If a(s) were in £°(u, S, s),
this open set would be a neighbourhood of a(s), and again we would have a contradiction of the
definition of ¢(s)2 Thus if smin < § < Smax, @(s) is in 0&(u, S, s). By the definition of smax, a(s) is
in 0&(u, S,s) when s = smax. This completes the proof of lemma 3.
Now we can prove

Lemma 4. Suppose that &(u, S,s) is externally tangent to &(u, E,€*). Then smin < § < Smax and
Emin < € < €max and €2 = €(5)2, s0 the point of external tangency is a(s).

Proof. Since neither ellipsoid is empty, smin < § and émin < €. If s > smax then &(u, §, 5) contains
ag, the centre of &(u, E, €2), so external tangency is impossible. A similar argument shows that
€ < emax. Next, since the two ellipsoids are strictly convex, an argument like the proof of unique-
ness in lemma 3 shows that there is exactly one point of external tangency, say a@’. In the two
degenerate cases @' = ag and a’ = ag the theorem is obvious, so we assume that @’ is neither
ag nor ag. Then smin < § < Smax, and émin < € < €max. Because @’. E.a’ = €%, evidently ¢(s) < e.
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Ife(s) < €, then &(u, S,s) and &'(u, S, e(s)?) have no common point, contrary to lemma 3. Hence
€ = ¢(s) and, by lemma 3, @’ = a(s).

Lemmas 3 and 4 establish that our problem is symmetric with respect to § and E. In particular
then, if émin < € < €max there is precisely one s in smin < § < Smax such that e = e(s). Therefore, since
€(s) is non-increasing, it must be strictly decreasing and continuous on Smin < § < Smax. Figure 2
shows, for N = 3, the relation between the ellipsoids o€’ (u, S, s) and 06 (u, E, ¢(s)?) and the point
a(s). The solid curve in that figure running from ag to ag is the path traced out in 5 (u) by a(s)
as s increases from Spin tO Smax.

Ragsv(u, S, 5)

H(u)

o

Ficure 2. The path followed in #(u) by the coefficient vector a(s) of the optimal averaging kernel A(r,,7) as s,
the spread of 4 from 7y, increases from s, t0 s,,,, and ¢, the absolute error in (mg, 4), decreases from ¢,,, to
€

‘min®

5. THE ALGEBRA OF ABSOLUTE ERRORS

The external tangency of 06 (u, S, s) and 06 (u, E, ¢(s)?) at a(s) gives us a means of calculating
a(s) and hence €(s).
(a) Algebraic statement of the geometrical problem
Suppose that 68 (u, S, s) and 68 (u, E, €?) are externally tangent at a. Then in the hyperplane
 (u) the outward normals to those two ellipsoids at @ must be antiparallel. Those outward
normals are given by (4.22) and (4.25). Hence there is a positive constant o such that

a(I-a0f).E.a+ (I-00).S.a = 0. (5.1)

If we define A = [u. (¢ E+ S).a]/(u.u) then (5.1) is
" (S+aE).a = (5.2)
We also have a.S.a=s (5.3)
and u.a=1 (5.4)

Equations (5.2), (5.3) and (5.4) are two scalar equations and a vector equation for the two
scalar unknowns  and A and the vector unknown a. If smin < § < Smax, then lemma 3 assures us
that those equations have at least one solution «, A,a, with & > 0 and a = a(s).

Conversely, suppose that for some s we have found a solution «, A, @ of (5.2), (5.3) and (5.4)
which has o > 0. Then we claim that smin < § < smax and @ = a(s). To prove this converse, first
we define €2 = a. E.a. Clearly, €2 > e¢hin. From (5.3), &£(u, S,s) is non-empty, so § > Smin. If
s = Smin then (5.3) implies that @ = ag = smin S~*.u. Then (5.2) becomes

@E.S .1 = (Afsmin—1) 1.

17-2
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Since @ > 0, the foregoing equation would imply the linear dependence of ag and ag, and the
equality of smin and Smax. This contradiction with our hypothesis shows that s & $yin, S0 § > Smin.
Similarly, € > €min. Now we dot I — @ on the left of both sides of (5.2). The result is (5.1), and
since o > 0 this means that a is a point of external tangency of &' (u, S, s) and &'(u, E, ¢%). It follows
from lemma 4 that @ = a(s), € = ¢(s), and smin < § < Smax. Since we already know that smin < s
and émin < € the strict monotonicity of €(s) requires Smin < § < Smax. We summarize the foregoing
remarks as

THEOREM 1. Suppose smin < Smax. Lhen for any s i Smin < § < Smax, equations (5.2), (5.3) and (5.4)
have a solution a, A, @ with & > 0 and @ = a(s). Conversely, if for some s those equations have a solution
&, A, @ with a > 0 then Smin < § < Smax and a = a(s).

There is a simple alternative argument to show that a(s) satisfies (5.2) for some a and A. We
know that a(s) minimizes a. E.a subject to the constraints #.a = 1 and 4.5.a < s. Lemma 3
permits us to replace inequality by equality in the last constraint, and then the method of
Lagrange multipliers gives (5.2). This argument does not show that among the 2N — 2 solutions
o, A, aof (5.2), (5.3) and (5.4) we want that solution with a > 0, a fact which will lie at the root
of our technique for solving those equations.

(b) Solving the algebraic problem

Since the solution of (5.2), (5.3) and (5.4) with & > 0 is uniquely determined by s, we can
write it as a(s), A(s), a(s). If we fix s and try to find @, A and @ the problem looks slightly more
complicated than an ordinary eigenvalue problem. The structure of (5.2) suggests that the
computation will be simpler if we regard « rather than s as the independent variable and try to
find solutions s(a), A(a), @(a) of (5.2), (5.3) and (5.4). We know from theorem 1 that we will
find at most one solution, and that if a solution exists it will satisfy smin < $(®) < Smax and
a(oc) =a(S(OL)). If we define 6(0(.)2 =a(a).E.a(a) (5.5>
then a(e) will be the point of external tangency of 88 (u, E, e(x)?) and 96 (u, S, s(x)).

For which positive & can we find a solution s(e), A(a), a(a) to (5.2), (5.3) and (5.4)? It will
shortly appear that the answer is any positive & whatever. First we note that in the sense of
dimensional analysis (Bridgeman 1963) § and E have different physical dimensions. We choose
a positive constant w such that, roughly speaking, S and w E will be of comparable numerical size.
A particularly convenient choice of w will be described later, but w can be chosen at will. Having
chosen it, we replace o by a new independent variable, 0, defined thus:

o = wtan. ‘ (5.6)

The domain of the independent variable 6 is the finite interval 0 < 6 < }m, corresponding to
the infinite interval 0 < & < oo.
If we write A(0) as £(0) sec 6 then (5.2) becomes
(Scos@+wEsinb).a(f) = £(0)u.

For any 6 in the closed interval 0<0<dn (5.7)

we define the operator W(0) = Scos@+wEsin 0. (5.8)
Then equations (5.2), (5.3) and (5.4) take the very simple form :

W(0).a = pu; (5.9)

u.a=1, (5.10)

s=a.S.a. (5.11)


http://rsta.royalsocietypublishing.org/

PN

s |

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INVERSION OF INACCURATE GROSS EARTH DATA 143

The operator W(6) is symmetric; and so long as 6 is in (5.7) the positiveness of w implies that
W (0) is positive definite. Then W(6) has a positive definite inverse, W(6)~. For any fixed 6 in
(5.7) we can write, from (5.9),

a(0) = p(O) w(0)*.u.

Then from (5.10), BO) = (u. W) t.u)? (5.12)
50 a(6) = %. (5.13)
Then s(0) =a(0).5.a(0) (5.14)
and €(0) =a(0).E.a(0). (5.15)

Now the algebraic problem is solved. For any 0 in (5.7), equations (5.9), (5.10) and (5.11)
have a unique solution 5(6), #(6), a(0). If 0 < 6 < 4 then smin < $(0) < Smax. Clearly, a(0) = ag
and a(3m) =ag, so 5(0) = smin and s(47) = Smax. Moreover, W(0)~! is continuous and
u.W(0)*.u is positive in 0 < 6 < §m, so a(0), s(0) and €(0)? are continuous in that interval.
We conclude that as 6 increases from 0 to 47, a(6) moves in 5 (u) continuously from ag to a,
while €(0)2 changes continuously from eax to €hin, s(6) changes continuously from smin t0 Syaxs
and the pair (5(6), €(6)) trace out a parametric representation of the curve e(s) for smin < § < Spax-

We know from theorem 1 that for any s in smin < § < Smax there is exactlyone 6in 0 < 6 < i
which permits a solution to (5.9), (5.10) and (5.11). Consequently the relation between 6 and s
is one-to-one, and s(f) must be a monotonically increasing function of 6.

(¢) The shape of €(s), the tradeoff curve of absolute error against spread

Further information about the shape of ¢(s) can be deduced by calculating d,s(0) and ¢,¢(6)2,
the derivatives of s(#) and ¢(6)? with respect to 6. From (5.14) and (5.15),

19,5(0) = a(0).S.,a(0), (5.16)
10,[we(0)2] = a(0).wE.d,a(0). (5.17)

To calculate 0,a(0) from (5.13) we must find 9,[W(60)~']. If we apply 9, to the equation
W(0)-1. W(0) = I we obtain

% [W(0)-1]. W(6) + W(6)~1.5, W(6) = 0,

or Qp[W(O)] = -W(0) 1.9, W(0). W(0)L (5.18)
Then from (5.13)
Wl uu. Wro,W. Wt u) WL o,W.W-lu
%a(0) = (u. W=, u)? T (u W) (5.19)
From (5.13) it is clear that [a(0) . W(0) .a(0)][u. W(0)~'.u] = 1, so, for any 6,
_ W(0).a(0)
“a(0).W(0).a(0)"
Thus we can write (5.19) as @(0)- W0)-a0)
8ga=(a.80W.a)a [(laulj’aa) W-1.0,W. a (5.20)

Now by differentiating the definition (5.8) with respect to 6 and multiplying first by sin 6 and
then by cos 0, we obtain sin 630 W(@) - W(@) cosf— S, }

5.21
cos @0, W(0) = wE— W(0)sin 0. (5.21)
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Equations (5.20) and (5.21) imply

sint?a(,a=(a'W'a) W:.I/;,S'-.‘?—(a.s.a)a, (5.22)
0050300=(a'wE'a)a_£ﬁI;V;la) W.wE.a (5.23)

Then from (5.16) and (5.17) we have
Lsin68,5(0) = (a.S.W“l.S.(:l).(;]..V‘II’.a)—(a.S.a)2’ (5.24)
Lcos08,s(0) = (a.S.a) (a.wE.a)—‘St.z.WI/I"‘.la) (a.S.W“l.wE.a)’ (5.25)
15in 08, [we(0)?] = (a.wE.W-.5.a) (a‘;’W;I}fz‘)l—(a.S.a) (a.wE.a)’ (5.26)
1 cos 0 6,[we(0)?] = (a.wE.a)*—(a. VI;..aI%/(f:wE.W—l.wE.a)‘ (5.27)

Geometrical arguments have already led us to the conclusion that d,s(6) > 0if 0 < 0 < 3.
Schwarz’s inequality for the positive definite operator W-1, applied to the vectors W.a and S.a,
immediately enables us to conclude from (5.24) that 9,5(6) > 0if 0 < 6 < }a, while (5.25) with
a = ag shows that 9,5(0) = 0. Geometry has also led us to conclude that e(s) is monotone
decreasing, so d,[we(0)?] < 0if 0 < @ < 47. From (5.27) we verify this inequality for 0 < 6 <
and we see that 9,[we(}m)?] = 0. It follows that the graph of €%(s) has a vertical tangent at
(Smin, €:ax) and a horizontal tangent at (Smax, €min)-

2
we ;'
|
|
|

W2 ———@0=0

wEl%lin >\
0

Smin [« Smax §

Ficure 3. A schematic picture of a typical tradeoff curve of absolute error against spread. The factor w is chosen
as described in the text, so that we? has the same dimensions as s, that is, a length.

Comparison of (5.25) and (5.26) shows that

cos 0.9ys(0) +sin 0 0,[we(0)?] = 0, (5.28)
d(we?
or _id_s-l = —cotl. (5.29)

Therefore if we plot the curve of we? against s, then 6 is the angle between the tangent to this
curve and the negative we? axis. Since 0 is a monotonic increasing function of s, it follows that the
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graph of ¢(s)? is convex toward the origin. That is, d*[¢(s)?]/ds® > 0. As we have already seen,
this curve has a vertical tangent at smin and a horizontal tangent at Smax; its appearance is
schematically that sketched in figure 3. Evidently a very small loss of resolution near smin leads
to a very great improvement in the error, and a very small increase in the error near émin leads
to a very great improvement in resolution. In general, we would expect to find it advantageous
to work well away from either end of the tradeoff curve. '

(d) The choice of w

If w is not carefully chosen, most of the absolute error tradeoff curve, ¢(s), will have 0 very
close to 0 or to 47. To avoid this possibility, we choose w so that equal changes in 0 produce
equal dimensionless displacements along the tradeoff curve at 0 = 0 and 6 = §7. That is, we

choose w so that 2os(hm)  2,[6(0)?]
=—- . (5.30)
Smax — Smin €max — €min
From (5.24) and (5.27) we have
- 2 . 4
8y5(3m) = 2_@/‘[__21_)&&3 and  9,[e(0)?] = — %_‘Z(LL)E@%,
WEmin Smin
2
where M=% (g, § E1.8.a;) and N =202 (g5 E.S-1.E.ag).
max ema.x
_ Smax M—1\* -(efna,xlefnin> —1)#
Then =3 X( T 1) [ | (5.31)
With this choice of w, we have
Ops(hm) _ _ 2[e(0)%]
Smax — Smin €ax— €2in
2
smﬂ,xema,x (M— 1) (N—‘ ].) }%
=2 . 5.32
Smin elznin {[<5ma,x/5min) - 1] [(zena,xlexznin) - 1] ( s )

The foregoing choice of w is convenient but not necessary. The error tradeoff curve ¢(s) and
the vector-valued function a(s) are independent of w. The choice of w simply governs the para-
metrization of s by 0.

() Summary on optimizing averaging kernels to reduce absolute error

Now we summarize our method for calculating the absolute error tradeoff curve ¢(s), the
vector a(s) and the corresponding optimal averaging kernel 4, in (2.5).

We fix r, and choose a constant w,, in any way we please, one convenient choice being (5.31).
Then for each @ in the closed interval 0 < 6 < 47 we calculate W, (0) from (5.8), a, (0) from
(5.13), s,,(0) from (5.14) and €,,(0) from (5.15). The vector a, (0) is the only point common to
o0& (u, S(r,), 5,,(0)) and 86 (u, E, €,,(0)?), and is the only point of external tangency of those two
(N —2)-dimensional ellipsoidal hypersurfaces in & (u). The minimum value of a.E.a in
&(u, S(ry),5,(0)) occursata, (0) andis¢, (0)%. The minimum value of a. S(ry).ain&(u, E,e¢, (0)?)
occurs at @, (0) and is s, (0). As 6 increases from 0 to 47, @,,(0) moves continuously (butin general
not in a straight line) from ag(7,) to ag, while s, (0) increases monotonically from smin(r,) to
smax(r) and ¢, (0) decreases monotonically from €max(r,) to émin. The curve of w,,€, (s)? against s
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is convex toward the origin, vertical at smin(,), and horizontal at smax(7,), and its tangent at any
point makes the angle ¢ with the negative axis of we?.

The complete symmetry between the pair E, ¢? and the pair S, s is now apparent. As suggested
at the end of § 35, we can obtain our optimal averaging kernels by finding the minimum, s(¢?%), of
a.S.ain &(u, E, €?) just as well as by finding the minimum, ¢(s)%, of a. E.a in &(u, S,s). When
Smin < 5§ < Smax and émin < € < €max the two functions e(s)? and s(e?) are inverse to one another.
When s > Smax, then €(s) = émin, while when € > €max then s(e?) = smin. Therefore we include the
dashed vertical line in figure 3 as part of the graph of ¢(s)2

For any particular 6 in 0 < < }m, the N components a, ;(0) of a, (0) generate, via (2.5),
that unimodular linear combination 4, ,(r) of the data kernels which permits {my, 4, o) to
be calculated from the data with a smaller absolute error variance than is possible for any other
averaging kernel (2.5) whose spread from 7, is as small as that of 4, 4. The spread of 4, ,fromr,
is 5, (), and the error variance in {mg, 4, o) is €,,(0)>

It is important to note that E and u and hence émin and @y are independent of r,. Therefore
at 0 = 4m, A, ,is independent of r,; in fact 4, ,, = A, the averaging kernel (2.5) obtained
from the components of @;. The averaging kernel Ay is that unimodular linear combination 4
of the data kernels which minimizes the error variance of {my, A). Among all averages (my, 4)
which can be calculated from the given gross Earth data, {mg, Ag) is the one which is most

accurately known. If we define
q= (915 ooy qN)a (5'33)

where ¢, is given by (2.16), then {mg, Ag) = q.0ag. (5.34)

Although this particular average may be very accurately known, usually it will be not at all
localized. As we decrease 6 to obtain more localized averages {(mg, 4, o), we are forced to
accept an increase in the error variance of those averages.

C. RELATIVE ERRORS
6. THE GEOMETRY OF RELATIVE ERRORS

The Earth model describing the real Earth is mg(r). As remarked in § 3¢, it is conceivable
that we would be more concerned about the relative than the absolute error in our estimate of
the average {my, A). Under certain circumstances we would expect that our optimal averaging
kernels would be very much the same, whether we obtained them by minimizing the absolute or
the relative error at a given spread. In appendix C we describe the circumstances under which
the optimal averaging kernels for relative and for absolute error are significantly different. In
§§ 6 and 7, we simply discuss the problem of minimizing relative error for a given spread.

(a) The geometrical statement of the problem
Suppose that m is a %-acceptable Earth model and G, ..., Gy are the data kernels at m. If
A(r) = Za;Gy(r) and a = (a, ..., ay), and if q is defined by (5.33), then
<mE, A> = q.a. (6.1)

If all the gross Earth functionals in & are linear, the only error in the assertion (6.1) is that
produced by the errors in the gross Earth data. If some functionals in & are non-linear, then
(6.1) is also in error by a term of order (my—m)? which we have agreed to ignore in the present
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paper. Thus the absolute error we commit be using (6.1) to calculate {(my, A) has variance
¢(@)? =a.E.a. We can take as a measure of the relative crror p(a) the expression e(a)/|q.a|.
Then we have a.E

(g9

For a given s, we seek the averaging kernel 4 of form (2.5) which minimizes p subject to the
constraints (2.22) and (3.6). Thus we seek the point @ at which p(a)? attains its least value in
&(u, S,s). It is clear from (6.2) that this problem is unaltered if we replace g by — q; without

ia

p(a)? . (6.2)

13

loss of generality we may and will assume that
q.ag > 0. (6.3)

Equation (5.34) makes clear that in (6.3) we are simply agreeing to use a sign convention for
Earth models which gives a non-negative value to that average of m which is known most

accurately.
(b) The error cones

For a fixed positive p we arc interested in the set of all points a for which p(a) < p. We denote
by €(q, E, p?) the set of all points @ in #ZV which satisfy

a.(E—p%qq).a < 0. (6.4)

We call this set the ‘error double cone for relative error p’. It plays the same role in the theory of
relative errors as does the solid error ellipsoid & (E, €?) in the theory of absolute errors. The set of
points a for which the inequality (6.4) is strict we call the interior of €(q, E, p?%), denoted
%°(q, E, p?). The set of points @ for which equality holds in (6.4) we call the boundary of
¥(q, E, p?), denoted 9%(q, E, p?).

Study of the error cone is facilitated by introducing a new geometry into #%. Lengths and
angles in this new geometry are to be calculated from the new inner product

(.f: g)E =f‘E-g9 (6°5)

where f and g are arbitrary vectors in #%. Since E is positive definite, (6.5) does define an inner
product on Z¥. In this new geometry, the length of a vector f is defined as

Ifle = (f.)b

while the angle between f and g, written Zz(f, g), is that angle between 0 and 7 such that

_ (f,8)e
cos 262 8) = 71, el

Then ¥(q, E, p?) consists of those points @ such that
la|z < p*(a, E*. q)E.
When a # 0 we can write this inequality as
[cos Zg(a, E7*. q)]* > p~2 | E*. q|| %
We define Prin = (¢.E1.q), (6.6)

and we define ¥(p) as that angle between 0 and 37 such that

cosyr(p) = B%"—‘. (6.7)

18 Vol. 266. A.
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Then%(q, E, p?) consists of the origin and all non-zero vectors @ such that Zg(a, E1. q) is between
0 and ¥ (p) or between 7 —y(p) and 7. In the geometry defined on Z¥ by (6.5), €(q, E, p?) is
a solid, N-dimensional, right-circular double cone with vertex 0, axis along E~1. g, and vertex
half angle ¥ (p).

Now we fix ¢ and E and consider the family of double cones €'(q, E, p?) as p varies. If p < pmin
then %(q, E, p?) contains only the origin. If p = pmin, €(q, E, p?) is the axis of the family of doublc
cones, i.e. the straight line through 0 which consists of all scalar multiples of E-1. q. If p > pmin
then %°(q, E, p?) is non-empty. As p approaches infinity, 0%(q, E, p?) approaches (from both
sides) the hyperplane perpendicular to the axis E-1. q and passing through 0. This hyperplane,
which we denote by 5#,(q), consists of all points a such that (@, E-1.q)g = 0, or, equivalently
a.q=0.

Now suppose p > pmin so that 0%(q, E, p?) is an (N — 1)-dimensional hypersurface. Let a be
any non-zero point on 9% (q, E, p*). We would like to have a non-zero vector n, (@) which is
normal to 0%(q, E, p?) at a and points out of €(q, E, p?). Sincc the function a. (E —p?qq).a is
ncgative in %°(q, E, p?) and positive outside €(q, E, p?), we can take half its gradient with
respect to @ as the desired outward normal:

n, () = (E—p’qq).a. (6.8)
But we must verify that n, g(a) + 0. In the contrary case we would have
a=p*q.a)E.q.

Since a # 0, it would follow that g.a & 0. Then dotting q into the foregoing equation and
cancelling q.a gives p = pmin, contrary to hypothesis. (Note. The geometry in which (6.8) is
normal to 0%(q, E, p?) is that of the inner product (4.1), not (6.5). In the gcometry of (6.5) the
normal is E-1.n, g(a). We will later nced the normal at @ only to define the tangent hyperplane
to 0%(q, E, p*) at a. This hyperplanc is independent of the geometry, so we will use the simpler
geometry to discuss it.)

In our discussion of absolute errors a crucial role was played by the strict convexity of the error
ellipsoid &(E, ¢?). The error double cone %(q, E, p?) is not even convex, but it consists of two
cones which are. By the ‘positive error cone’, . (q, E, p?), we will mean the set of all points a in
%(q, E, p?) such thata. g > 0. The interior of the positive error cone, %9 (q, E, p?) consists of all
points a in %°(q, E, p*) such that a.q > 0; and the boundary of the positive error cone,
0%, (q, E, p?), consists of all points @ in 6%(q, E, p?) such thata. q > 0. The negative error cone,
its interior, and its boundary are defined by replacing ‘a.q > 0’ with ‘a. g < 0’ in the foregoing
statements.

Evidently €9 (g, E, p}) and ¥° (q,E, p3) have no common point as long as p, and p, are finite.

The set
%—%(q’ E’ p%) n q”ﬂ—(q’ E, P§>
contains only 0, and the same is true of
ag+ (q> E) p%) n a?f_(q, Ey P§)~

Moreover, €(q, E, p?) consists of ¥,(q, E,p?) and ¥_(q, E, p?), while €°(q, E, p?) consists of
%'.(q, E,p?) and %°(q, E, p%), and 9%(q, E, p?) consists of 0%, (q, E, p*) and 8%_(q, E, p?). In
the geometry induced by (6.5) both €, (q, E, p?) and €_(q, E, p?) are solid N-dimensional right-
circular cones with axes E-'.q and — E~1. q respectively, with a common vertex at the origin,


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

INVERSION OF INACCURATE GROSS EARTH DATA 149

and with vertex half angle yr(p). The boundaries %, and 0% _ are the (N —1)-dimensional
surfaces of €, and %_, while €. and %° are their interiors. We note that

%+( —-q, E’p2> = g-—(q’ E’p2),
(g(—)'k(_ q, E, pz) =% (q> E, ,02), (6°9)
ag-i—(_q’ E,pZ) = 6g—-(q: E’p2)'

(¢) Convexity of the positive and negative error cones

The purpose of this subsection is to prove lemma 6, which states that the positive and negative
error cones are almost strictly convex. The proof requires

Lemma 5. Suppose E is positive definite and q is not 0 and p > pmin as defined by (6.6). Then
€.(q, E, p?) consists of all a of the form @ = tb with t > 0 and b in &(q, E, p?); and € ,(q, E, p?)
consists of all @ of the form tb with t > 0 and b in 06 (q, E, p?); and €°.(q, E, p?) consists of all a of the
Sorm tb with t > 0 and b in £°(q, E, p%). The foregoing statement remains true if we replace + by —,

> by < and > by < throughout.

Proof. We recall that &(q, E, p?) consists of all points b such that

qg.b=1 and b.E.b < p

Ifbisin &(q, E, p*) anda = tbwith¢ > 0,then ¢.a = ftand a. E.a < *p?,s0a. E.a < p%*(q.a)2.
Therefore a is in %(q, E, p%). Moreover, evidently g.a > 0,so aisin € (q, E, p?). Conversely, if
aisin%,(q, E,p?) andisnotO0letf =a.q > 0Oandlet b = t~'a. Thena =tband ¢.b = 1, and
froma. E.a < p*(q.a)®wecaninfer b. E. b < p? so bisin &(q, E, p?). The assertions in lemma 5
concerning %9 and 0%, are proved in the same way. The assertions about €_, ¥° and 0% _
follow immediately from (6.9).

Now we can prove

Lemma 6. If a, and a, are any two distinct points in € . (q, E, p?) and @' is any point between a, and a,
on the straight line segment joining @, and @y, then @’ is in €°. (q, E, p?) unless a, and a, are linearly dependent
and both lie in 0€ (q, E, p*). The foregoing statement remains true if + is replaced by — throughout.

Progf. Since % ,.(q, E, p*) contains two distinct points which, if linearly dependent, do not both
lie in 0% ,(q, E, p?), we infer that p > pmin. If @; = 0, then by hypothesis a, is in €9, (q, E, p?).
Since @’ must be a positive multiple of @,, lemma 5 puts @’ in €9.(q, E, p?). In the remainder of
the proof we can assume that neither @, nor @, is 0. Then by lemma 5 there exist positive numbers
t; and ¢, and points b, and b, in &(q, E, p?) such that a, = ¢, b, and a, = ¢, b,. Moreover, there
exist positive numbers a; and «, such that ‘

a;+a,=1 and @ = a,a,+0,a,.

If we define ¢’ = o t; +ayty, then ¢’ > 0, and we can define a; = o 4/t oy = ayt,/t’. We have
o) > 0, ay > 0, and o+ a5 = 1. Moreover, @’ = t'b’ where b’ = a; b, +a; b,. If b, and b, are
distinct, then lemma 2 tells us that b’ isin £°(q, E, p?), solemma 5 tells us thata’ isin 9. (q, E, p?).
If b, = b, then a, and a, are linearly dependent, so by hypothesis they are in €%, (q, E, p?). But
then by lemma 5, b, and b, are in §°(q, E, p?). Since b’ = b, = b,, it follows from lemma 5 that
a' isin €% (q, E, p?).
(d) Hyperplane sections of error cones

In the study of absolute errors, an important role was played by the intersection of the hyper-

plane 5 (u) with the error ellipsoid & (E, €2). For relative errors, the same role is played by the

18-2
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intersection of 5 (u) with the error double cone €(q, E, p?). Now we examine that intersection.
We define u(u,q, B,p?) = () 0 6.9, E,p?),
Cilu,q, E,p*) = #(u) % (g, E,pY),
3%1(11, q, E: pz) = %(U) n a%:I:(q> E,pz)‘
We also make the corresponding definitions for the whole double cone ¥(q, E, p?) by deleting +
in the three foregoing equations.
If a is a point on % (u, q, E, p%), we would like to have an expression for a vector normal to
0% (u, q, E, p*) at a lying in (i.e. tangent to) #(u), and pointing out of € (u, q, E, p?). One way
to obtain such a vector is to project the normal n, (a) of (6.8) orthogonally onto 5# (u). The

result 1is (I-ad). nq,E(a) = (I-4a4). (E__p2qq) .a. (6.10)

. 2
f_,_(q, E, pmin> ag

(1, ¢ B, p?)

H(u)

3%6_(q, E, p)

%- (q’ E, prznin)

FiGuRE 4. Illustration of the geometry and notation for an error cone in the case N = 3.

As in (6.8) and for the same reason, the geometry in which the vector (6.10) is normal to
0% (u, q, E, p?) is the geometry induced on #Z% by (4.1), not (6.5). To obtain a vector normal to
0% (u, q, E, p?) in the geometry of (6.5), one must dot (6.10) on the left with E-1,

The whole purpose of introducing %, and %_ is to obtain the following lemma:

LemMa 7. If u and q are non-zero vectors and E: RN — RN is symmetric and positive definite then
€.(u,q, E,p?) and €_(u,q, E, p?) are strictly convex.

The proofis simply an application of lemma 6 and the observation that two linearly dependent
vectors in S (u) are equal.

Now we examine the families %, (u, q, E, p?) in some detail as p varies. The axis of all the
double error cones %(q, E, p?) for various p is €(q, E, pin); it consists of all vectors a = tE-1.q.
The axis intersects # (u) at all such vectors which have u.a =1, or {(u. E-'.q) = 1. Thus if
u.E-1.q = 0 the axis does not intersect # (u), while if u. E-1.q > 0 there is exactly one point
of intersection, E-l.q

a%=u.E_1.q: (6.11)
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and ay lies in all the positive error cones €,.(q, E, p?) which have p > pmin. Thusif p > pmin, 8¢ 15
in €. (u,q, E, p%, and that set is non-empty. The possibility that u. E~.q < 0 is excluded by
(6.3). The effect of (6.3) is to insure that if the axis (g, E, p},) is not parallel to 5 (u) then
%.(q, E, pt,) intersects o (u) but ¥_(q, E, pp;,) does not. When u.E-'.q = 0, i.e. when
%(q, E, p%;,) is parallel to # (u), it is heuristically useful to think of a4 as (+00) E~1.q, a point
which has receded to infinity on %, (q, E, p,). For N = 3 and u. E~1.q > 0, the geometry of
the error cones and their relation to J#(u) is shown in figure 4.

From figure 4 it is clear that ¥(u, q, E, p?) is the N-dimensional generalization of a conic
section. As one would expect, the three-dimensional theory generalizes without difficulty.
Depending on the value of p, the intersection of the hyperplane # (u) with the double cone
%(q, E, p?) can be of elliptic, parabolic, or hyperbolic type. The critical value of p which separates
the elliptic from the hyperbolic intersections, and itself yields the parabolic intersection, is the
positive number p,,, such that

(a4—ag) . E.(ay—ag)
6.12
[q-(a,—a)T (612
Of course if the axis €(q, E, p%;,) is parallel to 5 (u) there is only the hyperbolic case, and
Ppar = Pmin. If the axis intersects (1) then necessarily ppa, > pmin. The whole situation is

-
Ppar =

summarized in

THEOREM 2. Let t and q be non-zero vectors in BN while E: BN — BN is symmetric and positive definite.
Define ag by (4.24) and when w. E~1.q > 0 define ay, by (6.11) and py,, by (6.12). Ifu.E-t.q = 0,
then € (u, q, E, p?) is empty as long as p < pmin, while for p > pmin, €(4, q, E, p?) are the two halves
of a non-empty, unbounded, solid (N — 1)-dimensional hyperboloid of two sheets in H# (u). Ifu.E~1.q > 0
then

(i) when p < pmin, (U, q, E, p?) is empty;

(i1) when p = pmin, €_(1, q, E, p?) is emply while € (u, q, E, p*) consists of the single point a,;

(iii) when pmin < p < Ppar, then €_(u, q, E, p?) is empty while €, (u, q, E, p?) is a compact, solid,
(N — 1)-dimensional ellipsoid in H (u) containing ay;

(iv) when p = pyay, then €_(u, q, E, p*) is empty while €, (u,q, E, p*) is an unbounded, solid,
(N — 1)-dimensional paraboloid of revolution in the geometry (6.5), its axis consisting of the points
ag+t(ay,—ag) for real t;

(v) when pyy, < p < 0, €_(u,q, E,p*) and €, (u, q, E, p?) are the two unbounded halves of a solid
(N — 1)-dimensional hyperboloid of two sheets in H (u).

When N = 3, theorem 2 is a well-known part of the theory of conic sections. Figure 5 illustrates
the case N=3, u. E~'.q > 0. A rigorous proof of the theorem for all N is simply an exercise in
N-dimensional geometry. One such proof among the many available is given in appendix D.

Even for N = 3, the expression (6.12) for p,,, is not trivial, so here we will describe briefly how
that expression is obtained. First, (6.6) and (6.11) imply that

1
uEl'l.q= 53—, 6.13
1= en(d-a,) (6.13)
2.
and that (q.az) (q.84) = Zf;{“ : (6.14)

Then from (4.23), (4.24), (6.13) and (6.14) we can show with a little algebra that (6.12) is

equivalent to
quivalen Plhin _1_9% (6.15)
p%ar q'a'c’ )
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Further manipulation of (4.23), (4.24), (6.6), (6.13) and (6.14) transforms (6.15) into the

equation 5 1 N2
pmm 1 (u‘E 'q) (6.16)

P~ (W ELu)(q.E.q)°
Equation (6.16) is very easy to interpret. In the geometry induced on Z% by (6.5), let ¢p,, denote

the vertex half-angle of _(q, E, p},;). Then according to (6.7), cos®¢pa; = Piin/Prar- Therefore
equation (6.16) can be written

cos®Ypar+cos? Lg(EL.q, E7L.u) = 1.
Since both ¥y, and £g(E.q, E-'.u) are between 0 and }7, this last equation is equivalent to
Vpar = 31— Lg(E7t.q, E71.u). (6.17)

Ficurk 5. Illustration, for N = 3, of the geometrical significance of p,,. The three possible positions of ag generate
three cases: @@’ has q.ag> 0 and p,,, > Pt = Pua; 6 has q.ag> 0 and P, < PF.. = Prax; 6 bas
q.ag < 0and p,,, = Pray-

The angle on the right in (6.17) is the angle between the cone axis E~1.q and the hyperplane
 (u), since E~'.u is the normal to # (u) in the geometry of (6.5). Thus (6.17) says simply that
if the hyperplane 5 (u) is to intersect both € (q, E, p?) and ¥_(q, E, p?) then (p), the vertex
half-angle of those cones, must be greater than the angle between their axis and 5 (u).

(e) Elementary remarks about p(s), the tradeoff curve between relative error and spread

As pointed out in § 64, to minimize the relative error in {mg, 4) for a given spread s of the
averaging kernel 4 from r,, we must minimize p(a), defined by (6.2), when a is restricted to
&(u, S,s). We define p(s) as the greatest lower bound of the values of p(a) when aisin &'(u, S, s).
If 5 < $min, then &(u, S, s) is empty, so we agree that p(s) = + co.

Ifs; < 55, then &(u, S, 5,) is contained in &' (u, S, s,), so evidently p(s;) > p(s,). If s = $min, then
é(u, S, s) consists of the single point ag, while p(s) takes its largest finite value, pmax, given by

as.E.as u. ST E.S'.u
(q.a5)* (u.8571.q)*

(6.18)

Pmax =
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As sincreases, &' (u, S, s) expands in 2 (1) until finally a value §max is reached at which 0€'(u, S, 5)
contains a4. Clearly -1 -
- q.E*.S. E'.q
Smax = Qg. S. A, = (ll 'f_‘l'a)—g‘— . (6’ 19)

(Note that §max is different from the smax which appears in the study of the tradeoff curve for
absolute errors.) If s > Smax then &(u, S,s) contains a,. But at a4, p(a) takes the value pmin,
which is the least value p(a) can have in 3¢ (u). Hence if s > $max, then p(s) = pmin.

We see that p(s) is +o0o for § < smin, monotonic non-increasing from pmax t0 Pmin in
Smin € § < Smax, and constant if s > Smax. Evidently the only interesting domain for s is
Smin € § < Smax.

What if smin = Smax? To deal with this possibility, we need more geometry. Suppose
K: %N > 2N is symmetric and positive definite. For any f and g in #¥, let (f, g)x stand for
f.K.g. Then (f, g)x defines an inner product with a Schwarz inequality on Z¥. Now

Smax _ (@5, 85)s (A4, B¢)s Pmax\* _ (as5,85) (9, O¢)x
32922070 2 and A
Pmin (as,a4)%

Hence smin < Smax and pmin < Pmax unless a, and ag are linearly dependent. But since both vectors

Smin (as,a4)%

are in S (u), if they are lincarly dependent they are equal. In this trivial case, p(s) = + oo when
s < Smin and p(s) = Ppmin When s > smin. Henceforth we will assume that ay =+ a@g, so that
Smin < Smax and Pmin < Pmax.

We must also deal with a second trivial case. If u and q are linearly dependent, then we can
writc ¢ = «u, and from (6.3) we infer that « > 0. For any @ in J#(u) we will have q.a = «, so
p(a) = e(a)/k. Then to minimize the relative error p(a) in &(u, §,s) we simply minimize the
absolute error ¢(a). This problem has already been treated in §§ 4 and 5. Therefore we will assume
that 4 and q are linearly independent. Then a, and a, are linearly independent, so @ # a,.
In fact, from (4.23), (6.6) and (6.13),

do—a.a. - VEq _u.E7.q
9-9¢~9% =y g-i.q u.El.u’
Then Schwarz’s inequality and (6.3) imply that
0<q.a;< q.a,. (6.20)

In our discussion of relative errors, we shall ignore both trivial cases. We shall assume that
a, * ag and a, =+ ag, so that smin < Smax, Pmin < Pmax, and we have (6.20). These assumptions
still admit a singular case, u. E-1.q = 0, for which a, is at (+o0) E~'.q and q.a, = + 0, and
Smax = + 0. Except in this singular case, pmin < ppar-

(f) The complete geometrical theory of p(s)

In § 4e¢ the discussion of the tradeoff curve for absolute error was based on the fact that the
level surfaces of both ¢(a) and s(a) in 5 (u) were the boundaries of strictly convex sets. This is
not true of p(a); if p > ppar then € (u, q, E, p?) consists of the two separate pieces €.(u, g, E, p?).
Evidently we want to study those pieces separately, so we define two functions:

p.(@) =p@) if g.a>0
=+o00 if q.a < 0;

p_(a) =pla) if ga<0
=40 if q.az0.

(6.21)
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154 G. BACKUS AND F. GILBERT

If we take the branch of arctan which lies between 0 and }7, arctanp, (a) and arctan p_(a) are
continuous functions of @; therefore we will say that p.(a) are continuous in an extended sense,
even though they take on the value + 0.

For any a, p(a) is the least of p,(a) and p_(a): p(a) = min{p,(a),p_(a)}. If p is finite,
€. (u,q, E, p) is the set of all @ in 5 (u) where p,(a) < p, while ¥_(u, q, E, p?) is the set of all @
in & (u) where p_(a) < p. We define p_ (s) to be the greatest lower bound of the values of p, ()
forain &(u, S, s), while p_(s) is the greatest lower bound of the values of p_(a) for ain &(u, S, s).

For any s, pls) = min {p, (5), p_ ()} (6.22)

Both p , (s) and p_(s) are monotonic non-increasing functions of s and both are finite only if s
is so large that &'(u, S, 5s) includes points @ with g.a > 0 and also points with ¢.a < 0. This can
happen only if s > s, where 98 (u, S, s,,) is tangent to 5#,(q) n (1) in 5 (u). We must find
5, and the point of tangency, a,. The subscript co refers to the fact that q.a, = 0, so that
pla,) = oo.

2
C+(q E, prin)

cag

& (u, S, 3,

max)

00@(”’ S’ sco)

0+ (4, ¢, E, p?)

6-(q, E, p)

C-(q, E, ply) —>

Ficure 6. Illustration for N = 3 of the case sq, > 5,5, Which requires g.ag > 0. Arrows on the curves a(s) and
a_(s) in #(u) point in the direction of increasing 6.

The normal to #y(q) in #(u) is (I—ail).q if we work in the geometry induced on #V
by (4.1). The normal to 96 (u, S, s,,) at a,, is given by (4.22). Thus there is a constant «, such that

(I-4aa).8.a, = a(I-40d).q.
Then there are constants & and £ such that
S.a, =aq+fu,
or a, =aS1t.q+pS51.u.

Now ¢q.a,, = 0 and u.a,, = 1, so we can evaluate « and £ as the solution of a pair of inhomo-
geneous equations. The result is
(§1.u)(q.871.q)—(85'.q) (u.5".q)

%o = "y S .u) (q.5L.q) — (u.81.q)¢F (6.23)
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Since s, = a,.S.a,, we have

- 985%'q ,
o = (w87 u) (q.57T.q) — (u.571.q)" (6.24)

From the definition of smin we always have smin < s,,, but it is perfectly possible to have 5., > Smax.
Figure 6 shows how this can occur; the relative sizes of s,, and §max are determined by the location
of agin J(u).
It is clear from figure 6 that the structure of the problem will depend heavily on the sign of
q.as. An appropriate notation is required. If q.ag > 0, we define
sx;in = Smin>  Smin = S0’ Prax = Pmax;  Pmax = +0; (6'25)
while if g.ag < 0 we define
Smin = Sw>  Smin = Smin; Prax = + 0,  Prax = Pmax. (6.26)
Also, whatever the sign of q.ag, we define
sr;a,x = Smax, Smax = T0; Pf{nn = Pmin, Prin = Prar. (6'27)
Reading ecither 4 or — consistently throughout, we observe that if s < sfi7 then pi(s) = +oo.
If sthia <5 < sphax then pi(s) decreases monotonically (we have proved only that it does not
increase) from pl.s to phin. If shis < s < oo then po(s) = phia-

AE(, S,5 )

max’

Hy(u)

9%-(q, E, p*)

Ficure 7. Illustration for N = 3 of the case s, < 5., and q.ag > 0.

By analogy with lemma 3 we have (reading + or — consistently throughout):

Lemma 8. If sfun < s then &(u, S,s) N €+(u, q, E, p+(s)?) contains exactly one point, which we denote
by ax(s). This point lies on 0€+(u, q, E, p+(5)%). When sfiy < s < shix, ax(s) also lies on 06 (u, S, s),
and consequently is a point of external tangency of 06 (u, S, s) and 0€+(u, q, E, p+(s)?).

The proof of lemma 8 is based on the strict convexity of ¥+(u, q, E, p?) and &'(u, §,s), and
proceeds almost exactly like the deduction of lemma 3 from lemma 2. We omit the details. A
generalization which includes both lemmas 3 and 8 is given in appendix A.

Continuing the same line of argument, we obtain an analogue of lemma 4 (read + or — con-
sistently throughout): :

19 Vol. 266. A,
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LemMA 9. Suppose that & (u, S, s) is externally tangent to €+(u, q, E, p?). Then siyn < s < sihax and
Piin < P < pihuw, and p = pi(s), so the point of external tangency is aL(s).

Again we omit the proof, since it is so like the deduction of lemma 4 from lemmas 2 and 3. The
general theory in appendix A includes lemmas 4 and 9.

The argument following lemma 4 can be repeated almost verbatim. If pfiz < p < pihax then
there is precisely one s in st < s < sthux such that p = p4(s). Therefore, since p,(s) is non-
increasing, it must be strictly decreasing and continuous on sfz; < s < siaz. (The continuity is
in the extended sense if pf; = +00.)

Figures 6 to 8 show the relation between &'(u, S,s) and €, (u, q, E,s) in the three possxble
cases. Figure 6 refers to the case q.ag > 0, 5, > Smax; figure 7 refers to the case ¢.ag > 0, 5, < Smax;
and figure 8 has ¢.ag < 0. When q.ag < 0, we must always have s, < Smax, because 6°(u, S, s,,)
contains only points @ with g.a < 0 while &°(u, §, Smax) contains points @ with g.a > 0 and
therefore must be the larger ellipsoid.

/—J«f’(u, S, Se) ﬁ

6 (u, S, s,

max)

%4 (u, q, E, p)

#,(q)

Ficure 8. Ilustration for N = 3 of the case 5, < §,,; and q.ag < 0. ‘

7. THE ALGEBRA OF RELATIVE ERRORS

The external tangency of 08 (u, S,s) and 0%..(u, q, E, p+(s)?) at a.(s) gives us a means of
calculating a.(s) and hence p..(s).

(a) Algebraic statement of the geometric problem

Suppose that 98 (u, S,s) and 9% (u, q, E, p?) are externally tangent at a. Then in the hyper-
plane 5 (u) the outward normals to those two hypersurfaces must be antiparallel. These outward
normals are given by (4.22) and (6.10). Therefore there is a positive number A such that

A(I-aa).S.a+ (I-ad).(E-p?*qq).a=0. (7.1)
If we define f’ = [Au.S.a+u.(E—p?qq).a]/(u.u) and t' = p*(q.a) then (7.1) is
(AS+E).a=1tq+pu.
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By dotting this equation on the left with @ and using the facts that u.a =1, a.S.a =, and
a.E.a = p*(q.a)?, we infer that 8’ = As. Thus there is a number ¢’ and a positive number A

such that (AS+E).a = t'q+Asu.

In addition we have u.a=1,

a.S.a=s,

p* = (a.E.a)/(q.a)"
Equations (7.2) and (7.5) imply a useful expression for p:

p* = t(q.a).

If 5 is given, then equations (7.2), (7.3), (7.4) and (7.5) are a vector equation and three scalar
equations for the vector unknown a@ and the three scalar unknowns A, ¢ and p. The first three
equations do not involve p, so we would expect to find a, A, ¢’ by solving (7.2), (7.3), (7.4), and
then to find p? from (7.5).

If sty < § < Shax, then according to lemma 8, equations (7.2) to (7.5) have a solution a, A, ¢/, p
witha =a,(s), A > 0,and p = p(s). And if 553, < § < Sgpax, then equations (7.2) to (7.5) have
a solution @, A, ¢, pwitha = a_(s), A > 0, and p = p_(s). ’

Conversely, suppose that for some s we have found a solution a, A, ¢’ of (7.2) to (7.4) which
has A > 0. Thenweclaimthateither sy, <5 < Sgpaxanda@ = a_(s) or sy, < s < Spacanda =a_(s).
To prove this converse we define p? by means of (7.5). Clearly p > pmin. From (7.3) and (7.4),
é(u, S, s) is non-empty, S0 § = Smin. If s = smin then (7.4) implies that @ = ag = smin S~'.1; when
we substitute this result in (7.2) and perform the obvious reductions, we obtain

Smin E. S—l.u = t,q,

whence a5 = a4, contrary to our agreement to exclude that trivial case. Therefore s > syin.
A similar argument beginning with (7.5) shows that p > pmin. Now we dot I — 1l on the left of
both sides of (7.2), and replace ¢’ by p%q.a from (7.5). The result is (7.1), and since A > 0 we
conclude that 9¢'(u, S,s) and 0% (u, q, E, p?) are externally tangent at @. Since @ must be on
either 0%, (u, q, E, p*) or 9¢_(u,q, E, p?) it follows from lemma 8 that either @ =a (s) and
p = pi(s)ora =a_(s) and p = p_(s). It remains to prove that in the former case s;i;, < 5 < Shax
while in the latter case sgi, < § < Sqax Equations (6.27) show that s < sg, is trivial while if @ is
on 0% then s < s}, because p > pmin. We have already shown that s > smin and we must have
§ 2 shinon 0%, and s = sy, on 0% _, since p is finite. It remains then only to show that s =+ s,,.
Butifs = s, thena = a,and q.a = 0, whilea. E.a > 0, asituation which forces (7.5) to produce
the result ¢’ = oo.
We have proved the analogue of theorem 1:

THEOREM 3. Suppose smin < Smax. 1hen for any s in spim < s < sjhuy equations (7.2) to (7.5) have a
solution a, A, t',p with A > 0, @ = ay(s) and p = p.(s). Conversely, if for some s those equations have a
solution a, A, t', p with A > 0, then either s55, < S < Sgax, @ = @_(S) and p = p_(s), 07 Sihin < § < Sihaxs
a=a.s),andp=p,(s).

Again, we could easily have deduced (7.2) by using the method of Lagrange multipliers to
minimize a. E.a/(q.a)? subject to the constraints #.a = 1 and a.§.ae = s, but we would not
then know that A > 0, and we would not have the converse assertion in theorem 3. We will make
heavy use of these two extra items of information.

19-2
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(b) Solving the algebraic problem

For any s, equations (7.2) to (7.5) have at most two solutions with A > 0, namely a.(s), A+(s),
t1(s), p+(s). As with (5.2), the structure of (7.2) suggests that the computation will be simpler if
we regard A rather than s as the independent variable and try to find solutions @, (A), £.(A), s+(A),
p+(A) to (7.2) to (7.5). We know from theorem 3 that we will find at most two solutions, one on
0%, and one on 9% _, and that if they exist then a..(A) = a+(s+(A)). Thus a,(A) will be the point
of external tangency of 9¢'(u, S, s, (A)) and ¢ _(u, q, E, p..(1)?) while a_(A) will be the point of
external tangency of 96’(u, §,s(A)) and 9¢_(u, q, E, p_(1)%).

In the spirit of equation (5.6), we choose a positive constant w so that, roughly speaking, § and
wE are of comparable numerical size. Then we replace A by a new independent variable 6,
defined thus: A = (wtan ), (7.6)
The domain of the independent variable 6 is the finite interval 0 < 6 < 7, corresponding to
the infinite interval 0 < A < co. If we define W(6) by (5.8) and define t = t'wsin 6 then equations
(7.2) to (7.5) can be rewritten as

W(0).a = tq+scosbu (7.7)
u.a=1, (7.8)
s=a.S.a, (7.9)
p? = ‘(’71—%% (7.10)
As one consequence of these equations we deduce that (7.10) can be replaced by
9 t
pt = (q.ajwsind’ (7.11)

Since we are regarding ¢ as the independent variable, the problem is to pick a value for 8 in
the interval 0 < 0 < 47 and then try to solve the four equations (7.7) to (7.10) for the four
unknowns a(0), ¢(0), s(0), p(6). Evidently the heart of the problem is to solve (7.7) to (7.9) for
a(0), t(0), s(8); then p(0) can be obtained immediately from either (7.10) or (7.11).

To give the solution of (7.7) to (7.9) in compact form we will need some notation. For any

VeCtorf in %N we define j’(a) — W(e)__l f

Then for any vectors f and g we have f.g =f. g =f. W-1. g = f. W. g. Since W-1is positive
definite, f.f > 0 unless f = 0. In terms of the particular vectors # and ¢ given by (2.19) and

(2.16), we define h(0) = (qu—uq).i(0), (7.12)
so that h(0) = (Gii — @1q) .u. (7.18)
Two properties of i will be useful. Evidently
3 u.h=o. (7.14)
Then if we dot h into (7.12) we obtain .
q.ﬁ:Z:Z>o. (7.15)

In (7.15) the inequality is strict because if h.h = 0 then h = 0, so, from (7.12), u and q are
linearly dependent.
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Now we can solve (7.7) to (7.9). If for the moment we regard ¢ as given, then (7.7) and (7.8)
can be solved for a@ and s. The result is

i1 +th
al0) =5 (7.16)
s(0)cos0 =+, (7.17)

When we substitute these expressions for @ and s in (7.9) we obtain a quadratic equation for #:
at?+bt—c¢ = 0, (7.18)

The coefficients in this equation are calculated as follows: we define R = S'cos@and D = wEsin 0,
so that W = R+ D. Then

a=h.R.h,
b= (u.it) (q.@)+2@.R.h
(w.) (g.8) + 2. R F 9
= (u.i1)(q.@)—2it.D.h,
c=1.D.i.
In deducing the second expression for 4, we used (7.14).
The two solutions of (7.18) are
— 2 P
ty = iﬂe@j@_, (7.20)

2a

where, at this stage, the subscript + or — on # refers to nothing but the choice of signs on the
right-hand side of (7.20). If 0 < 6 < 7 then @ > 0 and ¢ > 0, so both roots (7.20) are real. In
factif0 < 6 < {mthena > 0Oand¢ > 0,soin that openinterval ¢, and ¢_ are distinct. At 6 = 0, we
have b = 53}, q.ag,s0 ¢, and {_ are distinct unless ¢.ay = 0. At 6 = 7, we have b = wle; 4, q. ag,
so ¢, and ¢_ are distinct unless g.ag = 0.

If we insert any solution ¢ of (7.18) into (7.16) and (7.17) the resultis a solution a, ¢, s of (7.7) to
(7.9). Then we can calculate p? from (7.10), and by theorem 3 we know that @ is a point of
external tangency of 96’ (u, S, s) and 9% (u, q, E, p?). Butisaon 0%, (u, q, E,p*) or 0¢_(u,q, E, p?)?
From (7.15) and (7.16) we see that q.a is positive or negative, and a is on 0%, or ¢%_, according
as ¢ —t,, is positive or negative, where .

t =12 (7.21)
q.h
Now we claim that if 0 < 6 < 47 then ¢, produces via (7.16) an @ which is on 0%, while ¢_
produces an @ on 9%_. That is, we claim that {_ < ¢, < ¢,. Since (7.19) shows that a > 0, it
suffices to prove that P(t,) < 0 where P(f) = at?+bt—¢. From (7.14), (7.19) and (7.21) we
deduce that

—(q.h)?P(t,) = (q.@)2 (h.D.h)—2(q.i@t) (q.h) (@&.D.h) +(q.h)*(@t.D.it)
>|q.i1|2(h.D.h)—2|q.il||q.Rh||i.D.h|+|q. k|2 (1.D.i).
Since u# and q are assumed linearly independent, (7.12) implies that # and b must be. Then

i1 and h are linearly independent. When 0 < 6 < }m, D is positive definite, so by Schwarz’s

inequality . . .
|i1.D.h| < (@i.D.@1)* (h.D.h)%.

But then —(g-h)?P(t) > [|q.i| (h.D.h)t—|q.R| (@t.D.@)4]2
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Thus P(t,,) < 0. We conclude that the subscript + or — on the left side of (7.20) gives not merely
the choice of sign on the right hand side of that equation but also the sign of ¢.@ when a is obtained
by substituting ¢, or ¢_ from (7.20) into (7.16).

We conclude that for any 6 in 0 < 6 < 7, equations (7.7) to (7.10) have two different solu-
tions, @, (0), t,.(0), s, (0), p,.(0) and a_(0), t_(0), s_(0), p_(0). To obtain these two solutions, we
calculate a(6), 5(0), ¢(0) from (7.19), and then obtain ¢, (6) and ¢_(#) from (7.20). We find a.(0)
by substituting £.(6) in (7.16). Then we can find s4(6) from either (7.17) or (7.9), and we can
find p+(0) from either (7.11) or (7.10). Then a,(0) is the unique point of external tangency of
08 (u, S,s,.(0)) and 9% (u, q, E, p, (0)%) while a_(0) is the unique point of external tangency of
08 (u, S,s_(0)) and 0% (u, q, E, p_(0)?). The functions s, (0) and p_(0)? give a parametric repre-
sentation of p, (s), while s_(6) and p_(0)? give a parametric representation of p_(s). It is clear
from (7.20), (7.16), (7.17) and (7.11) that if 0 < 0 < 47 then a.(0), t.(0), s+(0) and p+(0)
are continuous (in fact continuously differentiable) functions of 6.

It follows from theorem 3 that g, < s_(6) < Smaxs Sthin < S4+(0) < Sthaxs Pmin < P—(0) < pmaxand
Prin < P(0) < pihax when 0 < 0 < i7. Theorem 3 also implies that if 553, < § < sqpay then there
is exactly one 0in 0 < 6 < dmsuch thats = s_(0); and if s;;;, < s < siha« then there is exactly one
0 in 0 < 6 < }m such that s = s, (0). Thus s.(6) must be strictly monotone functions of # in
0 < 0 < 4m. Since pL(s) are strictly monotone in sy < s < sfhux, therefore p.(6) must also be
strictly monotone functions of @in 0 < 6 < 7. The interesting (non-constant) parts of the curves
p+(s) are traced out by the pairs s4(0), p+(6) as 0 increases from 0 to 4, but the uninteresting
(constant) parts of those curves fall outside the parametrization.

(¢) The shape of p(s), the tradeoff curve for relative error against spread

We can now describe in general terms the appearance of the two curves p.(s) and their
parametrization by 6.

First, what happens as 6 approaches 0 or }7? If 6—%m then R = Scosf/—0 while
D = wEsin0—->wE and W—wE. Thus

. ol q . aE
- o 7.22
glir;rh wzegnin (ag aE)’ ( )

and, from (7.19) and (7.22),

. a .ag\? \
lim (%ﬂ—(}) = (;}12645) (a—ag).S.(ay—ay)

0—)%# min
. _(9-9
011>m7rb B (wzeﬁlin) ’
01‘11;'6 - we?nin.
2
Then lim ¢, (0) = Wemin
0—»%# q-aE
2,4 1
and im (47— 0)1.(0) = () -
" 0i>%7r(2 )1-0) q.ap) (ay—ag).S.(ay—ag)
50 Jima,(0) = aq (7.23)
and lim (7 —6) a(6) = _[ Weinin ] (ay—ag) (7.24)
Pl (85—ag).S. (ag—ag) | ¢~ F" :
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It follows that lim 5, (0) = Smax, lim p_(0) = pumin, (7.25)
0—>1m 0—3m
d lim (1 —6)2s_(6) W6
an im (37 —0)%s5_(0) = ,
0—>§7r(2 ) (a‘f—aE) .S (a‘ﬁ_aE) (726)
lim p_(0) = ppar.
0—%m

As 0> 0, we have R— S8, D -0, and W S. Thus

lim fr = [~«&-~] (as—a.,). (7.27)

Smin(‘yw _‘ymin)

In deducing (7.27), we have used (6.24) to infer that

— 5o(q . as)*
.S1.q = ALK 7 A
g 1 Xmin(soo —Smin) ’
and (6.23) to infer that S-l.q = (m) (—‘1‘5« —‘L‘B) .
So —Smin/ \Smin S
Also, as 0 -0, from (7.19) and (7.27),
2
11 = ,_M) lim b = q.ag 1 (_) — wemax.
01—{% ¢ Shin (S0 — Smin)’ 01—13 Shin 01—>0 0 Shhin

It is clear from (7.20) that as 6 — 0 and ¢ — 0 the behaviour of ¢, and ¢_ depends on the sign of &,
i.e. the sign of q.ags. We will ignore the special case q.ag = 0. If ¢.ag > 0 we have

limz¢, (0) =0, lim ¢_(0) = = min 7.28
lim 2, (0) Yim ¢_(6) 4.0 (7.28)
and lim a,(0) = ag, (7.29)
6—0
lim a_(0) = a. (7.30)
6—0
Then, for q.ag > 0, lim s, (0) = smin, lim p,(0) = pmax, (7.31)
6—0 60
. . .E.a,)?
d 1 _(0) = 5, lim Gp_(0 =(&°w—L. 7.32
an alj;ré‘y ( ) 00 p ( ) |q.60a_(0)| ( )

In (7.32) and henceforth, if f(6) is a function of 0, its derivative with respect to 6 is written 9,f.
Formulae (7.28) to (7.32) all refer to the case q.as > 0. When q.ag < 0, the subscripts + and —
must be interchanged everywhere in (7.28) to (7.32).

At this point we are finally able tostate that s, () and s_(0) increase monotonically as 6 increases
from 0 to 7. We already knew that s, (6) depended monotonically on 6, and now it is clear that
5_(0) < s_(3m) and 5,(0) < s, (§m). But since p+(s) is monotonic decreasing in s, it follows that
p+(0) and p_(0) decrease monotonically as ¢ increases from 0 to .

For N = 3, figures 6 to 8 show the curves @, (s) and a_(s) and their behaviour as 60 or
0 — 4. The arrows on the curves a.(s) in those figures point in the direction of increasing 6.

Now we are able to sketch the general appearance of the two curves p , (s)2and p_(s)2 A number
of cases must be considered. Figure 9 shows the two possibilities when q.ag > 0 and §pax < $,.
Since we are only interested in p(s) for smin < § < $max, and since p(s) = min{p_(s), p_(s)},
evidently when ¢q.ag > 0 and Smax < S, We can ignore p_(s) altogether, whatever the sign of

Ppar — Pmax.
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Ficure 9. A schematic picture of the two curves, p, (s) solid and p_(s) dashed, when s, > 5,,,. The tradeoff curve
of relative error against spread in p(s) = min{p,(s), p_(s)}. In the upper graph we assume Py > Ppay, and
in the lower p,,;. < Py

TQ=0 t\O 0

l
} \\/<’—<S)2 l‘\/)
| \\_5 =1 % \\
2 Ty
Iopar_—m—'—‘{_——_ 0=0 I
|

2
Pinax

Y, L\
AL A

2
Pmin

THE ROYAL
SOCIETY

pmax

2
Ppar

2.
Pmin

PHILOSOPHICAL
TRANSACTIONS
OF

Smin S Smax Smin Seo Smax
FiGure 10. A schematic picture of the two curves, p. (s) solid and p_(s) dashed, when q.ag > 0 and 5, < §,,5. The
tradeoff curve of relative error against spread is p(s) = min{p,(s),p_(s)}. All four cases are possible, and

examples of each have been computed.
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In figure 10 we suppose that ¢.ag > 0 and 5, < $max. In figure 102 we have ppar > Pmax, while
in figure 104 the point (s,, p3,,) lies above (s, P (50)?2), even though ppar < pmax. In figure 10¢
the former point has dropped below the latter, but not far enough to produce an intersection of
p.(s) and p_(s). In figure 104 such an intersection has appeared. Since p(s) = min{p,(s), p_(5)},
it is clear that p_(s) is of interest only in figure 104. When ¢q.ag > 0 and s, < $max the most
efficient scheme for calculating the curve p(s) is evidently as follows: first calculate the whole
curve p_(s). Then if ppar > pmax, set p(s) = p,(s) and ignore p_(s). If pmax > pPpar > p,(5x), s€t
p(s) = p(s) and ignore p_(s). If p_(s,,) > ppar, then calculate that part of the curve p_(s) which
has p_(s) < p.(s.) and p,(s) > ppar. In this range of s, set p(s) = min{p (s), p_(s)}, and elsewhere

set p(s) = p4(s)-

f6-0
/or%ax I hgk=0
Ionzmx = 0=0 % \\ 104-(8)2
I\ | \
AN N
2 2 I ~ = ——
Ppar _"__'T__' /opar___r_‘ _________ ==
/or%ﬁn i /onr%in i 9:%“
| |
Smin  Swo Smax Smin S Smax

Ficure 11. A schematic picture of the two curves, p,(s) solid and p_(s) dashed, when q.ag < 0. The tradeoff curve
of relative error against spread is p(s) = min{p(s), p_(s)}. Multiple crossings of the p,. and p_ curves, as in
the right figure, are believed to be possible, but no examples have yet been encountered.

In figure 11 we suppose that q.ag < 0. In that case we always have 5o, < Smax and ppar < Pmax,
so the two curves p, (s) and p_(s) always cross at least once, as in figure 11a. It appears possible
in principle that they can cross three times, as in figure 114, or perhaps more often when N is
large. When s is close to Smin, p(5) = p_(s), and when s is close to smax, p(5) = p.(s). To calculate
p(s), we calculate p_(s) from smin to the s, such that p, (s,) = ppar, and we calculate p(s) from
the s, such that p,(5;) = p_(5,) t0 Smax. Then p(s) = p_(5) in smin < § < 53, p(s) = min{p,(s),
p_(8)}in 5y < 5 < 55, and p(s) = p(s) In 5y <5 < Smax.

A word of caution about figures 9 to 11 is required. We have proved that p (s) and p_(s) are
monotone decreasing, as shown in those figures. We will show in appendix C that they have
vertical tangents when 6 = 0 and horizontal tangents when 6 = }7. We have a numerical
example, not given here, which looks like figure 104, so that figure shows a real possibility. We
have no numerical examples like figure 115, but suspect that such examples will be found.

We will not prove, and suspect it is not always true, that p_(s)% and p_(s)? are convex. The
convexity of e(s)2, the tradeoff curve for absolute error against spread, followed from (5.29).
The analogous equation for relative errors, proved in appendix B, is

[q.ai(s)]ﬂ[-”-’égf@ = —cot0. (7.33)

Because 9,y5+(0) > 0, we can deduce from (7.33) that convexity of p+(s)? is equivalent to the
inequality d,{tan 0[q.a=(6)]2} = . (7.34)

We have not been able either to prove or to disprove (7.34).

20 Vol. 266. A.
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Equation (7.33) gives us an interpretation of the parameter 6. Unlike (5.29), (7.33) contains
a.(s) explicitly, so the value of ¢ at a point on the curve p.(s)? cannot be deduced from that
curve alone. Nevertheless, (7.33) does resemble (5.29) rather closely, in that for any @ in 2V
we have (q.a)2p(a)? = e(a)?.

(d) The choice of w

In calculating p, (s) and p_(s), the two branches of the tradeoff curve for relative error against
spread, it will be convenient to choose the parameters w, and w_ to be different.

When ¢.ag > 0, we choose w, so that there is a single number L such that

L, - Wls(0)] _ tys(hm (7.35)

p?na,x - p12'nin h Smax — Smin’
and we choose w_ so that there is a single number L_ such that

lim 02p_(0)2 lim (4m—0)%s(0)
— 0—%m .

6—0
= 7.36
p12:nax —prznin Smax — Smin ( )
It is shown in appendix B that the result is
w4 = (Ni/Mi)%, (7.37)
Ly = (MyNy)t, (7.38)
as. (E—piax99) - 57 (E—praxq9) -9s
h M, = S max m 'S 7.39
where * (P — Phae) (4-65)? ’ (7:39)
N, = ag. S.E. S'a%'i' (fx?aax — 25max Oy - S'aE)/elgnin (7.40)
* Smax — Smin ?
M = Ein (7.41)
=™ (o — 5min) [ (@ —07) . 8- (ag — )]’ '
(soo —‘\Ymin)2
and N_= . 7.42
(P~ Phae) (4-65)* (@ B-6.) (7:42)
When q.ag < 0, we choose w, so that
3034_(%77) = fma,x—soo (7.4:3)
and w_ so that —05[p_(0)2] = pliax— Poar- (7.44)

In appendix B it is shown that these choices imply

1 pfnax _ plz)ar )
w_ = 7.45
2‘]M+ (p?nax - pxznin ( )

Smax — S

and w, = 2N, ("“““J:sﬂl) (7.46)

where M, is given by (7.39) and N, by (7.40).

D. NUMERICAL ILLUSTRATIONS

For purposes of illustration we now discuss two inverse problems in some detail: in the first
problem the density and seismic velocities of a spherical Earth are assumed known, dissipation
is assumed small, and the radial dependence of the dissipation function is sought from the
observed damping rates of a finite number of normal modes of elastic-gravitational oscillation.
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In this problem the relevant gross Earth functionals are linear. As a second, nonlinear, example
we try to determine the radial dependence of the density in a spherical Earth whose seismic
velocities are known; the gross Earth data are the Earth’s total mass and moment and the
squared circular frequencies of oscillation of a finite number of identified normal modes.

15
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Ficure 12. The density and seismic velocities used in all the calculations in §D. It is shown in §9 that the small
hump in density just below the crust is not resolvable with the data used here.

8. A LINEAR EXAMPLE: DISSIPATION

If the dissipation is small (@ > 1) we can calculate it by first-order perturbation theory. We
assume in this section that p(r), vp(r) and vg(r), the density and seismic velocities, are known
functions of the radius r. Figure 12 shows the functions we have actually used. In the absence of
dissipation we can calculate the displacement field for any normal mode of oscillation of the
Earth. For the ith normal mode we denote by S;(r) dr the maximum elastic shear energy stored
in the spherical shell between r and » +dr, and by E; the total energy of oscillation in that normal
mode. Both S;(r) and E; are proportional to the square of the amplitude of the oscillation, and

their ratio, G,(r) = 8;(r)|E,, (8.1)

is completely determined by p(r), vp(r), vg(r) and iz, the index identifying the oscillation. An
explicit expression for G;(r) appears in Inverse II.

We denote by 27/Q, the fraction of the energy of oscillation of the ¢th normal mode which is
dissipated as heat in one cycle of the oscillation. We denote by 277/Q(r) the fraction of the maxi-
mum shear-energy density at radius r which is dissipated as heat in one cycle of oscillation. As the
notation indicates, we assume that this fraction is independent of the amplitude of the oscillation
and the period required to execute it, that the dissipation process is isotropic, and that
pure compression is a non-dissipative process. If any of these assumptions fails, then the radial

20-2
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166 G. BACKUS AND F. GILBERT

dependence of dissipation requires more than one function of r for its description, and the appro-
priate Earth model is n-dimensional with # > 1. This situation is discussed in Inverse II but will
not be pursued here. We neglect viscous dissipation in the core (Backus 1968).

According to first-order perturbation theory we have

o = [ anrenar, (5.2

where G;(r) is given by (8.1). Equation (8.2) has the standard form (2.1) if we set m(r) = @(r)™!
and g;(m) = @;*. Then the gross Earth data, v,, are the observed values of @;* for the normal
modes. The space It of Earth models consists of all piecewise continuous functions m(r) which
vanish in the fluid core, and ‘reasonableness’ in the sense of Inverse II is the requirement
m(r) > 0 in the mantle. The value of @(r)~! in the real Earth is my(r).

(a) Artificial data, absolute errors

As a first illustration we suppose that the true Earth has

my(r) = 0.004r (8.3)
in the mantle and my(r) = 0 in the core, and that we have succeeded in observing @4, ..., @y for
the following 24 normal modes (N = 24): (So, 150, 2505 50> 151> 251 052> 2525 1935 0525 1905 254> 4515 0575
1585 05255 05495 05735 05975 0275 01145 0L 37> 053> 01 105+ We call this set of gross Earth data ,, %57, The
labelling of normal modes by type, radial order n and angular order /is described, for example, in
Inverse I. The modes in ,, %57 are chosen to represent @, for surface waves with periods longer than
about 100s and, in addition, to include some data from the deep mantle which conceivably will
be observed eventually. The frequencies of all the normal modes in , 457 have been observed in
records of the Chilean earthquake of 1960 or the Alaskan earthquake of 1964, but for the most
of them @; has not been reliably measured because of the spin and ellipticity gaps (Gilbert &
Backus 1965; Dahlen 1969). The problems raised by these gaps now seem to be under control
(Dahlen 1969), but this fact has not yet been exploited.

We assume that all the y; = @; 'in ,%7" have been measured with errors (standard deviations)
of 5 9, and that these errors are uncorrelated. This last assumption is based on the fact that the
different y; are measured from a single time series by band-passing different parts of its frequency
spectrum. Because of our assumptions, the 24 x 24 matrix £;; defined by (3.4) is diagonal:

E; = 2.5%x1073(y,)28,, (8.4)
where no sum on ¢ is intended.

We proceed as in § B. At a given r, in the mantle we calculate the tradeoff curve for absolute
error against spread, in order to see what combinations of accuracy and resolution the data make
available to us in our attempt to calculate local averages of m(r) near r,. Figure 13 shows these
trade-off curves for five different values of 7y, namely 0.55, 0.65, 0.75, 0.85 and 0.95. It is note-
worthy how rapidly the error ¢ drops when the spread s is increased only slightly above smin on
these curves. A very slight loss of resolution in the local averages permits a very large increase in
their accuracy. This feature of the curves is somewhat obscured by our plotting Ig € against Ig s.*
The graphs of € against s look almost like a right angle, and do not show the details of the ‘corner’.

Figure 14 is a contour map of the width w(A4) of the optimal averaging kernel A(r,7) as a
function of 7, and the absolute error ¢ committed in calculating the local average (my, A4 from
the given inaccurate data. The oblique nearly straight line in figure 14 is 1g {my(r,)} calculated
from (8.3). The region above this oblique line is uninteresting; there the error ¢ is larger than the

* lg = logy,.
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quantity being calculated. It is clear from figure 14 that if errors in our estimate of the local
average {my, A) are acceptable when no larger than 10 %, of my, then the width w need never
be greater than about 0.11 (700km) and if 0.9 < r < 1 (the upper 600km of the mantle) the
width can be between 0.06 and 0.01 (between 360 and 60km). Thus figure 14 makes clear at a
glance what resolutions are available at various radii 7, and how these resolutions depend on the
absolute error ¢ which we will tolerate in our estimate of the local average of my at 7,.

Figure 15 is a contour map of ¢(4) —r, as a function of 7, and e. Here as in figure 14, for any ¢
and 7, the function A(ry,r) is that linear combination of Gy(7), ..., Gy(r) which minimizes the
spread s(ry, A) subject to the constraint that the variance of the error in {mg, 4) shall be no
greater than €2, It is clear from figure 15 that the centre ¢(A(ry, 7)) is quite close to 7, except in the
far lower left corner of the figure. There the resolution is so poor (see figure 14) that it is of no
importance that the optimal averaging kernels are not centred on their 7,.

(b) Artificial data, relative errors

Here we repeat the calculations of § 84 verbatim except that we use the relative error p rather
than the absolute error ¢, so that § C rather than § B is illustrated.

Figure 16 gives the tradeoff curves between spread s and relative error p at four different
radii 7, namely 0.55, 0.65, 0.85 and 0.95. Again a very small sacrifice of resolution provides an
enormous improvement in the accuracy of the local averages {mg, 4). In figure 16 the error p is
always p,, because p_(s) > p,(s) for all 5 if the data are , ;7.

In figure 17 we give the optimal averaging kernel at 7, = 0.90 for eight different values of the
relative error p (in this case always p,) starting with pmax and ending with pmin. This figure
illustrates again how small a change is required in 4(7,,7) to decrease p from a ridiculous to a
usable value when s is near smin, and how little we can decrease p by relaxing our demands on
resolution when s is near Smax.

Figure 18 is a contour map of the width w of the optimal averaging kernel 4(r,, ) as a function
of 7, and the relative error p. It leads to essentially the same conclusions as figure 14. In the
present instance little is gained by using relative rather than absolute errors except that of course
the contour map for relative errors is slightly easier to interpret than the map for absolute errors.

Figure 19, a contour map of ¢(4) —r, as a function of 7, and the relative error p, is almost

indistinguishable from the corresponding map (figure 15), for absolute errors, even though the
A(r,,7) in figure 19 is chosen to minimize s5(7,, 4) subject to a constraining bound on the relative
rather than the absolute error in {mg, 4).

(¢) Real data, relative errors

Now we repeat the calculations of § 85 with a different set of gross Earth data, only ten in
number. These values of Q; ' = 7y, for ten normal modes have actually been measured and
reported in the literature. The data, 7,, and the estimated standard deviations of their errors,
[(8y,)2]}, are given in table 1. The values for i = 1 and 2 are from Knopoff' (1965), while vy,
through y,, are from Ben-Menahem (1965) and the errors are from Toks6z & A. Ben-Menahem
(personal communication). Other workers have used more extensive tables of @;%, but without
recognizing the very serious systematic errors produced by the spin and ellipticity gaps (Gilbert &
Backus 1965; Dahlen 1969). Again we assume that the error variance matrix E;; defined by (3.4)

is diagonal; the ith diagonal entry, (8y;)?, is obtained from table 1. The set of 10 gross Earth data
in table 1 we denote by (%57.
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Figure 20 gives the tradeoff curve between spread s and relative error p at r, = 0.83. Evidently
p(s) = p_(s) when s is to the left of the crossing point of the curves for p,(s) and p_(s), while
p(s) = p,(s) to the right of that point. The curve p(s) is of interest only inside the rectangle
bounded by the dashed lines. Outside that rectangle either the spread or the relative error is
greater than unity. At ry = 0.83 the resolution is poor; if we want an error less than 10 %, in our
estimate of a local average of Q(r)~, the spread of that average from 7, must be at least 0.3,
or 2000 km.

T T T T T T
c A c
=161 % P=00151 K
Ja)
C /\J C
—
5 | =235 % £=0.0107 %
=
<
Ja)
1
\C c
2=0.366 % P=0.010198 %
4
/A
\___\/_,/
C ¢
£=00329 % £-0010208 %
1 1 1 1 1

1
0.6 07 0.8 09 10 06 0.7 0.8 0.9 10

r

Ficure 17. The optimal averaging kernel 4(0.90,7) for various values of relative error p (always p,) when the
gross Earth data and the function to be determined are as in figure 13. The vertical line extending above and
below the 7y axis is at 7y = 0.90, and the vertical line lying wholly above the axis is at ry = ¢(4), the centre of 4.
The horizontal line gives the width of 4 except for the two widest kernels, whose widths are greater than 0.45
and will not fit in the mantle.
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TABLE 1
mode
index ¢ mode Vi x 10° [(8y.)213/ys
1 oSs 2.85 0.15
2 oS3 2.63 0.15
3 0522 3.89 0.05
4 Saz 5.67 0.05
5 60 6.10 0.05
6 07 6.90 0.05
7 0T 53 7.41 0.05
—_ 8 0T s 7.63 0.05
< 9 oTes 7.87 0.05
P 10 oTos 9.17 0.05
2 : Here y,is Q;7%, so 2my; is the fraction of the energy of oscillation lost in one cycle of the ith normal mode. The
— standard deviation of the error in measuring ; is [0y, 0y.]*.
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FicurE 20. The two curves p, (s) solid, and p_(s) dashed, at r, = 0.83 when the gross Earth data are ,¢;7, given
in table 1, and the function to be determined is m(r) = @(r)~%, the dissipation function. The tradeoff curve
between relative error and spread is p(s) = min{p..(s), p-(5)}.
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Figure 21 gives a contour map of the spread s(ry, 4) of the optimal averaging kernel 4(r,,r) as
a function of 7, and the relative error p. The bottom boundary of the cross-hatched region is
Pmax(7,). Below the line Igp = 0, p is p, except within the small semi-ellipse pendant from that
line between 7, = 0.7 and 7, = 0.9. Within that semi-ellipse p is p_, and the appropriate contours
of s as a function of 7, and p_ appear in the small inset just above the line Igp = 0.

Figure 22 is a contour map of the width w of the optimal averaging kernel A(r,, ) as a function
of 7y and p. The conventions are as in figure 21.

0.25 0.10
~ ~
S ~
0 | —
QU
o
.‘l .
1g prin
9 i I L I
0.6 0.8 1.0

o

Ficure 21. A contour map of s(ry, 4), the spread from 7, of the optimal averaging kernel 4, as a function of ry and p,
the relative error in {my, 4). The singly cross-hatched region lies above Ig p,,,. Inside the doubly cross-hatched
region p is p_, while outside it p is p,. The correct contours of s as a function of 7y and p (i.e. p_) are given in
the inset just above the doubly cross-hatched region. The dashed contours in that region give s as a function
of ry and p,. The gross Earth data and the function to be determined are as in figure 20.

Figure 23 is a contour map of ¢(4) —r, for the optimal kernel 4 as a function of r, and p. Again
the conventions are as in figure 21. Except in the lower left corner of the diagram, where the
resolution is execrable, the averaging kernels are well centred at their 7,.

How do we draw conclusions from such data? As an example, we consider whether there is
a low-Q zone in the upper mantle. Figure 24 gives {(my, 4) as a function of r, when A(r,, r) is the
averaging kernel which minimizes s(r,, 4) subject to the constraint that the square root of the
variance of the error in {my, A) should be less than 10 9, of {my, A) itself. The dots in figure 24
give {my, A(r,,7)) at various r,. The length of the horizontal line through each dot is the width
of the corresponding optimal averaging kernel, while the length of the vertical line is the error
(standard deviation) in {my, 4) at r,. The dots show a hump in {myg, 4) with a maximum near

21-2
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E ] Ficure 22. A contour map of the width w of the optimal averaging kernel A(r,,r) as a function of 7, and the relative
error p. Conventions are as in figure 21, and the gross Earth data and the function to be determined are as in
figure 20.
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Ficure 23. A contour map of ¢(4) —r, as a function of r, and the relative error p. Conventions are as in figure 21,
and the gross Earth data and the function to be determined are as in figure 20. This map is the companion to
figure 22.
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1
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F1GuRE 24. Values of {(my, A) as a function of r when A(r,, r) is optimized subject to the requirement that the relative
error in {mg, A) be no greater than 0.1. The dots are values of (myg, 4); the vertical line through each dot
represents a 10 9 error in {my, A); the horizontal line through each dot gives the width of the corresponding 4.
Gross Earth data are ,%;7 in table 1, as in figure 20, and {my, 4) is a local average of the dissipation function

Q).
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Ficure 25. A contour map of {my, 4) as a function of 74 and the relative error p. Conventions are as in figure 21,
except that the contour interval varies with p; when 2-* > p > 2-%-! for any non-negative integer £ the
contour interval of 1g {myg, 4) is 0.4343/2%. Thus the contour interval is always between p and 2p where p is
the error in the quantity being contoured. Gross Earth data and my, are as in figure 24 or figure 20.
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7o = 0.93 (corresponding to a depth of 450km) but the errors and widths are so large that this
hump may not be real.

Perhaps if we had taken a value for p other than 0.1 we would have found an unambiguous
hump, This question is settled by figure 25, a contour map of (mg, A) for the optimal 4 as a
function of 7, and the relative error p. The contour interval is chosen to be large when p is large
and small when p is small, so that detail is suppressed if it is within the error bounds on (my, 4).
To be specific, when p < 1 the error in In {my, 4) or In(q.a) is p, so for any non-negative
integer £ when 2% > p > 2-%-1 we plot lg (¢.a) with a contour interval of 0.4343/2%+1, Thus
the contour interval in In (q.a) is always between p and 2p; that is, the error in lg {my, 4) is
never more than the contour interval. If for some p, the horizontal line p = p, in figure 25 has
a local maximum of 1g {my, A) which is at least two contour intervals high then this maximum
is at least two standard errors high and there is a moderate chance that it is real. In figure 25 no
such local maximum occurs. There is a statistically very significant local minimum in 1g {my, A)
near r, = 0.97 if lg p < — 1.25, but this corresponds to a localized high-¢ zone.

We conclude that the data in (%57 do not establish the existence of a low-Q zone in the mantle
of the sort described by Anderson & Archambeau (1964) and Knopoff (1965). The data do,
however, establish the existence of a high-Q zone at a depth of about 200km. This positive
conclusion, of course, presupposes that we are looking at the right space of Earth models and
the right gross Earth functionals; i.e. that @(r) is frequency independent and that the density
and seismic velocities which we use to compute the data kernels are correct. The conclusion also
presupposes that our estimates of the errors in the data are not excessively optimistic.

9. A NONLINEAR EXAMPLE: DENSITY (RELATIVE ERRORS ONLY)

In this section we assume that the seismic velocities vp(r) and vg(r) are known, and we seek to
determine the density p(r) from a set of 26 gross Earth data which we shall label , %57, These
data are the observed mass and moment of the Earth and the squared circular frequencies of
oscillation of the 24 normal modes listed immediately after equation (8.3). Since all but the first
two gross Earth functions are nonlinear, we must start with a model which fits the data; we use
figure 12. And because of this nonlinearity we must recognize that our conclusions about unique-
ness apply only to ,%57T-acceptable Earth models which are close to the model shown in figure 12,
Our analysis does not discover whether there are ,47-acceptable Earth models grossly different
from the model of figure 12. Finally we note thatin §9 it will always turn out that p_(s) > p_.(s),
so therelative error p is always p,,. (In what follows we will write the density as m(r), thus avoiding
confusion with the relative error p.)

(@) Real data, 0.1%, errors

In this subsection we use the real data and assume that the standard deviation of the error of
observation for each datum is 0.1 9%, of the datum, while standard errors of different data are
uncorrelated. Then the 26 x 26 matrix E,; defined by (3.4) is diagonal, the ith entry being
7% % 1078, Our value for vy, is from Jeffreys (1959), 7, is from Jeffreys (1963) and King-Hele, Cook
& Watson (1964), the normal mode frequencies with / < 20 are from Slichter (1967) and Caputo
(1967, personal communication for ;§; and ,5;), and the normal mode frequencies with / > 20
are from Tokséz & Ben-Menahem (1963). The phase velocities observed by Tokséz & Ben-
Menahem are reduced to normal mode frequencies by Gilbert & Backus (1968). The data are
listed in table 2.
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In order to calculate averaging kernels we must have the Fréchet derivatives G,(r), ..., Gy(7)
of the gross Earth functionals g, ..., gse. Both G;(r) and G,(r) are trivial, while Gy(r), ..., Gyg(r)
are given in Inverse I.
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Figure 26. A contour map of the width w of the optimal averaging kernel 4(rg, ) as a function of 7, and the relative
error p. The gross Earth data are , %7 in table 2, and the function my(r) to be determined is the density at
radius 7. Errors in the gross Earth data are assumed to be 0.1 %, Throughout the diagram p is p..

Figure 26 is a contour map of the width w(4) of the optimal averaging kernel A(7y,7) as a

SOCIETY

function of r, and the relative error p. If we are satisfied with 1 %, errors in our estimates of

THE ROYAL A

localized averages of the density, then it is clear that the resolving power is moderate. The widths
are less than 0.07 (450km) in the upper mantle, less than 0.10 (640 km) throughout the mantle,
and less than 0.15 (950km) everywhere except in the deepest 1000 km of the core.

Figure 27 is a contour map of the value of ¢(4) —r, for the optimal averaging kernel 4 as a
function of r, and the relative error p. If we set p = 102 then clearly |¢—7,| < w except in the
deepest core, so the averaging kernels are centred where we want them.
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FIGURE 27. A contour map of ¢(4) —r, as a function of 7y and p.
This map is the companion to figure 26.

(b) Real data, published errors

In this subsection we repeat §9a, except that we use the published errors for the gross Earth
data instead of assuming errors of 0.1 %, The data and errors are listed in table 2. Again we
suppose that 8y,dy; = 0ifi + j.

Figure 28 is a contour map of the width w(4) of the optimal averaging kernel A(r,,7) as a
function of r, and the relative error p. For a given p, the values of w are larger than in figure 26
because most of the published errors are larger than 0.1 %,.

Figure 29 gives ¢(4) — r, for the optimal averaging kernel 4 as a function of r, and p. As in
figure 27, the averaging kernels are centred where we want them, except in the deepest core.

In Inverse IT we gave estimates for the density just above and just below the core-mantle
boundary, based on the hypothesis that the lower-mantle density and the upper-core density
varied linearly with r over the interval where the optimal averaging kernel had appreciable
weight. If the real Earth resembles figure 12, inspection of that figure shows that the procedure
in Inverse II is applicable only when the averaging kernels have widths less than about 0.1.
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From figure 28, if this is to hold in 0.45 < 7, < 0.65 then we must have lgp > —1.5 or
p > 0.03 in 0.55 < 7y < 0.65 and lgp > —2.0 or p > 0.0l in 0.45 < r, < 0.55. Therefore the
error in our estimate of the density m(r, + ) just above the core-mantle boundary is 3 %, while the
error in our estimate of the density m(r,—) just below that boundary is 19, when the
uncertainties in the observations are taken into account. The result is

m(r,+) = 5.72+0.17gcm™=3, m(r,—) = 10.0+0.1gcm3, (9.1)
TABLE 2
datum .
index 7  functional Vi [(&y:) 2]t fy.
1 mass 5.517gem™2 0.0006
2 moment 0.00389 0.0005
3 oSo 2.6175 x 105 0.0004
4 +So 1.0822 x 104 0.0004
5 »So 2.4790 x 10~ 0.004
6 +5o 4.2994 % 104 0.004
7 S 6.4892 % 106 0.008
8 oS 3.5202 x 10— 0.008
9 oS 3.7679 x 10-6 0.004
10 25 4.7294 % 10-5 0.004
11 4S5 3.4467 x 10~ 0.012
12 oSa 1.6471 x 10-5 0.012
13 1Sy 5.4014 x 10-5 0.012
14 oSy 7.5094 x 10-5 0.012
15 A 2.2326 x 10~ 0.016
16 o7 5.9659 x 10-5 0.012
17 +Ss 1.2764 x 10— 0.012
18 oSas 4.4310 x 10 0.012
19 +Sio 1.1981 x 10-3 0.012
20 oS3 2.3731 x 10-3 0.012
21 o7 3.9239 x 103 0.012
22 o1y 5.8334 x 10— 0.012
23 0T 1.7300 x 10 0.012
24 oTor 4.9320 x 104 0.012
25 oTss 1.6004 x 10-3 0.012
26 oT0s 5.6920 x 10-3 0.012

7, is the observed mean density of the Earth and 7, is the observed dimensionless ratio of its moment of inertia
to the product of its mass and the square of its radius. The data 7, ..., v, are the squared circular frequencies of
oscillation of the normal modes listed in the functional column’; units are s~2.

In Inverse IT the gross Earth data were assumed perfectly accurate and the much smaller quoted
errors in the two densities referred only to the effect of deviations from linearity in the graph of
the density in figure 12. Of course equations (9.1) still assume that the vp(r) and vg(r) in figure 12
exactly describe the real Earth, and they assume that the density of the real Earth is not grossly
different from that of figure 12. To eliminate the former assumption requires a tripling of the
number of gross Earth data we use, and requires a larger computer than has so far been available
to us. To eliminate the latter assumption requires a theory for solving the nonlinear uniqueness
problem in the large.

22 Vol. 266. A.
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Ficure 28. The same as figure 26 except that the errors in the gross Earth data are those
reported in the literature and listed in table 2.
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FicUure 29Y. The same as figure 27 cxcept that the errors in the gross Earth data are those reported in
the literature and listed in table 2. This map is the companion to figure 28.
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APPENDIX A. CONSTRAINED INFIMUMS OF PAIRS OF FUNCTIONS

The purpose of this appendix is to isolate the critical parts of the hypothesis in lemmas 3 and 8
and thus to prove a general result which includes those lemmas as special cases.

We denote by Z the field of real numbers, and we let /4 be any connected Hausdorff space
containing at least two points (and hence a continuum). We want to examine real-valued
functions ¢ on H, but we want to permit ¢ to take the values + oo and — oo at certain points of .
We can do this if we replace ¢ by arctan ¢, which will then be an ordinary real-valued function
mapping H into the closed interval [ — i, $7]. We will say that ¢: H— 2 U {00, — o0} is con-
tinuous if arctan ¢ : H—>[ — 4, 3] is continuous in the ordinary sense.

We define ¢inr as the infimum or greatest lower bound of all the numbers ¢ (%) with 4 in H,
while @gyp is the supremum, or least upper bound, of the same set of real numbers:

Gint = inf{p(h) :heH}, Psup = sup{p(k):heH}.
The proofs of our subsequent remarks in this appendix will suppose that —o0 < ¢y and
¢sup < +00, but the extension to the case ¢t = —00 or @gup = +00 is immediate: we simply
replace ¢ by arctan ¢.
For two functions ¢: H— % and y: H— % we want to consider the monotonic, non-increasing

real-valued functions
my, 4(s) = inf{yr(h): he H and ¢(h) < },}
my 4 (t) = inf{p(h): he H and ¢ (h) <t}

To exploit the symmetry between ¢ and ¥ in (A 1) we begin with:

Derinition. If ¢: H—Z# and ¢: H—Z then S(¢, ) is the set of all ordered pairs (s, ) of
real numbers such that for some % in H we have ¢(%) < s and (k) < ¢
We will denote by %2 the plane consisting of all ordered pairs (s, ¢) of real numbers. Evidently
S(p, ) is open in %2, while if (s,t) eS(p, ) then s > ¢inr and ¢ > Yy ;. Moreover, S(¢p, )
contains all the pairs (s,¢) with s > ¢sup and ¢ > Pins or with s > ¢dinr and ¢ > Yrgup.
If S is any subset of %2, we denote the closure of § by § and the boundary of S by aS. By the
transpose of S, written $7, we will mean the set of all ordered pairs (2, s) such that (s,¢) is in S.

Then clearly $(¢, )" = S(i, ¢), 05($, )" = 85(¥, ¢) and S(¢, )" = S(¥, 4).

The elementary facts about §(¢, ) listed in lemma A 1 follow immediately from the definition:
Lemva A L. If ¢: H—> % and 2 H— R then

(i) S(@, ) is open in R?;

(i) if (s,8)eS(@, ) and s = sand t' > t then (s',1') € S(p, ¥);

(iii) if (5,2) €S(P, ¥) and s’ > s and ' = t then (s',t') €S (, ¥);

(Qv) if (s,8) eS(p, ) and s’ > s and t' > t then (s',') € S(p, ¥);

(v) if there is an he H such that ¢(h) < s and yr(h) < t then (s,t) €S(¢, ¥).

Clearly 05 (¢, ¥) is not the graph of a function, but to study it we introduce two functions whose
graphs will turn out to bound a$ (¢, ¥). We define

m,j‘ ¢( ) = inf{t. 5: ES ¢: lﬁ)} }
my, 4(s) = inf{t: (s,2) YeS(p, )}
We agree that the infimum of the empty setis +00, 50 my 4(s) = +00ifs < Pmrand my, 4(s) = +oo0

(A1)

(A2)

if s < ¢ins. We will need a number of properties of myj, 4 and my, 4. Obviously mj, 4(s) > my, 4(s).
Then we have
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LEMMa A 2.

(1) t > my 4(s) implies (s,t) €S (¢, ¥);
(i) my 4(s) < t < my,4(s) implies (s,t) €S (¢, )5
(iil) ¢ < my, 4(s) implies (s, t) ¢S (@, ¥r).

Proof. The first and second of equations (A 2) imply (i) and (iii) immediately. Moreover, from
the first of equations (A 2), if ¢ < mj 4(s) then (s,) ¢S(¢, ), while from the second of those
equationsif ¢ > my 4(s) then (s,2) €S(¢, ). Thusifmy, 4(s) < t < mj, 4(s) then (s, ¢) €8S (¢,¥). Then
(i1) follows because dS5(¢, ¥) is closed.

As a corollary of lemma A 2 we have

my,4(s) = sup{t: (s,1) €0S(4, ’ﬁ)},}
my,4(s) = inf{t: (s, 1) €08 (g, ¥)}.
As another corollary of lemma A 2 we have

Lemma A 3. If he H and ¢(h) < s then yr(h) = myj, 4(s).

(A3)

Proof. By lemma A 2, (¢(h), my, 4(¢(h))) eS(@, ¥). If (k) < mj 4(s) then by part (iv) of lemma
A1, (s, mj,4(s)) €S(#, ¥). This contradicts part (ii) of lemma A 2.

We also have

Lemma A 4. If s; < s, then my, 4(s1) = my, 4(s5)-

Proof. Let t; = my, 4(s;) and t, = my, 4(s5). From part (ii) of lemma A 2, both (s, #;) and (s,, 2,)
are in 8S(¢, ). Then from part (iv) of lemma A 1 we must have 4, < t,.

Because my, 4(s) < my, 4(s), lemma A 4 implies without further argument that

LeMMA A 5. my, 4(s) and mj;, 4(s) are monotonic non-increasing functions of s.
It is also easy to prove

LeMMA A 6. my, 4(s) is continuous on the right and myj, 4(s) is continuous on the left for all s.
Proof. We may assume @it < 5o Let ¢ = lim mj 4(s). If # < my 4(so) then the fact that

88+
50, 1) €8 (¢, 1) contradicts the definition of my 4(s,). Therefore ¢ > my 4(s,), and lemma A 4
0 ¥, ¢\%0 ¥4\
requires equality. The same argument applies to my, 4(s,).
LeMMA A 7. my, 4(s) < my, 4(s) < my, 4(s).
Proof. Again we may assume ¢int < 5. If mj, 4(s) < my 4(s) then, by lemma A 2,

(5,my,4(5)) €S(, %)

so there is an 4 such that ¢(h) < s and (k) < my, 4(s). This contradicts the definition of m,, 4(s).
Again,_ Aif my, 4(5) < my, 4(s) then for any ¢in my, 4(s) <t < my 4(s) we know from lemma A 2 that
(s,8) ¢S (p, ). But then part (v) of lemma A 1 implies that for no such ¢ is there an Ae H with
¢(h) < s and (k) < t. Again we contradict the definition of m,, 4(s).

Lemma A 8. Let s be any real number > ¢ins. Suppose that for every s < s we have my, 4(s') > my 4(s).
(This is always true if s = ¢pint.) Then there is an infinite sequence {hy, hs, ...} of points in H such that
lim ¢(h,) = s and lim Y (h,,) = my 4(s).

n—r0

n—>00

Proof. Let t = my, 4(s). Since (s,t) eS(¢, ¥) there is an infinite sequence (s, t,) €S(¢, ) such
that lim (s,,¢,) = (s,¢). Then, by the definition of S(¢, ), for each n there is an 4, in A such that

N—>00

¢(h,) < s, and ¥ (h,) < t,. Thus lim sup¢p(h,) < s and lim supyy(h,) < . Let ' = liminf¢(4,,).

N=—»0 n—r0
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If s < s then there are infinitely many 7 such that ¢(#,) < (s’ +s). By lemma A 3 these all
have ¥ (h,) = mj 4 %(s'+5) = my 45(s"+5), 50 im sup ¥ (h,) > my, 34(s"+5) > my, 4(s) = ¢. This
Nn~—>0

contradiction forces us to conclude that 5" = s,s0 lim ¢(4,) = s. Let ' = lim infyr(4,,). Clearly

(5,t')eS(@,¥) so by part (iii) of lemma (A2) ¢’ ;_)tw Thus lim ¢ (4,) = ¢ o
Now we define Vmax(P) = my 4(Pint), Pmax(¥) = my y(Ying). (A4)

We have ¢inf < ¢ma,x(¢') < ¢sup and ¢'inf < ¢‘max(¢) < "ﬁsupo AISO, if s> ¢ma,x(w) then
my 4(5) = Yrmg, while if 5> Pmax(¥) then my 4(s) = Yns. Similarly, if ¢ > Ymax(¢$) then
mg 4 (t) = ¢mg, while if ¢ > Yrmax(¢) then mf ,(¢) = Pint. Moreover, if int < s < Pmax(¢) then
Vint < my,4(5) < my,4(5) < Ymax(9). (A5)
The fact that Yrint < my, 4(s) when s < ¢max () follows from the definition of my;, ; (¥inr), equation
(A1). The fact that mj, 4(s) < ¥max(¢) when s > @ins follows from the definition of Y¥max(¢p) and

lemma A 4. By taking transposes of all the sets in question we immediately infer from (A 5) that
when ¥int < ¢ < Yrmax(¢) then

bine < mg y(8) < mfy(t) < Pmax(¥). (A6)
It follows that ¥rint = Yrmax(@p) if and only if Gint = Pmax(¢¥), in which case
| S(¢: ’(/f) = {(5, t) . ¢inf < s and Winf < t}.
We define G(p,¥) = 0S(d, ¥) n{(s,2):5s > Pint and ¢ > Ying}.

From what has been said, G(@,¥) consists of G(¢, ) and the two points (@int, Ymax(p)) and
(¢ma,x(1ﬁ), ’ﬁinf), 50

G(¢, ¥) = aS(, ¥) N {(5,8) s < Pmax(¥) and ¢ < Ymax(4)}-

From lemma A3 we infer that there are at most denumerably many values of s where

my, 4(5) < my 4(s),i.e. where G(¢, ) has straight segments parallel to the ¢ axis. We want to
know when these occur.

DerINITION. If {hy, by, ...} is a sequence of points in H such that ¢(h,) < s for all n and lim r(h,) = t,

N—>c0

and if (s,t) € G(@, ¥), then the sequence {h,} is said to * ($, yr)-evoke the point (s,t)’, and (s, t) is * an evoked
point in G(p,yr)’.

We have

LemMA A 9. If (s,my, 4 (5)) is an evoked point in G(p, ) then myg, 4(s) = my, 4(s).

Proof. Let ¢ = my, 4(s) and let {£,} be a sequence in H which (¢, y)-evokes (s, ). Let s, = ¢(k,)
and ¢, = Y (h,). According to

Lemma A 3. ¢, > mj, 4(s). But lim t, = ¢, whence the conclusion.
n—>00
To proceed further with the discussion, we need some limitations on the functions ¢ and .
We introduce

DerinirioN. If ¢: H— 2 then a point he H is a weak local minimum of ¢ if there is a neighbourhood U
of h such that ¢(h') > ¢ (k) for all ' € U.

DeriNtTiON. If ¢: H— Z then ¢° is the restriction of ¢ to the domain {h: ¢ins < b (h) < ¢sup} n H.

DerinirioN. We say ¢: H— R is yr-compactly defined if for any real s < Pmax(4r) the set {h:p(h) < s}
is compact in H.
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Using these definitions we can prove

LemMa A 10. Suppose p: H— R and : H—> R are both continuous, that either ¢ is yr-compactly defined
or ¥ is p-compactly defined, and that ¢° has no weak local minima. Then if ¢int < 5 < Pmax(Y) we have
mg,(s) = mi,4(s)-

Proof. Let t = my, 4(s) and suppose ¢ < mf, 4(s). Then ¢ < Yrmax($). According to lemma A 4,
my, 4(s') > my 4(s) for all 5" < 5. Then lemma A 8 gives us a sequence {%,} withlim ¢(4,) = s and

n—>o0

lim Y (h,) = t. Since s < ¢Pmax(¥) and ¢ < Ymax(@), the fact that either ¢ is yYr-compactly defined
n—r0

or Y is ¢-compactly defined assures the existence of a limit point % of the sequence {4,}. The

continuity of ¢ and ¢ then implies ¢(%#) = sand (%) = t. But ¢°(%) = s and ¢° has no weak local

minima. Hence there exists a second sequence {4,} such thatlim %, = £ and ¢(#,) < s. According
n—r0

to lemma A 3, {r(h,) > mj 4(s) > ¢, which contradicts the continuity of 1. Hence the conclusion.
In consequence of lemma A 6 the hypotheses of lemma A 10 also imply that my, 4(s) is con-

tinuous in @int < 5 < Pmax(¥). If (Pmax(¥), ¥int) is an evoked point in G(¢, ), then lemma A 9
shows that my 4(s) = mj, 4(s) if s > ¢int, and that my, 4(s) is continuous if s > Gin.

Now we summarize our observations as theorems.

TueoreEM A 1. Suppose ¢: H— R and r: H—>R are continuous and that ¢° and yr° have no weak local
minima. Suppose either that ¢ is yr-compactly defined or fr is -compactly defined. Suppose that (Pmax (), Yint)
is an evoked point in G (¢, ) and (Ymax(9), dins) is an evoked point in G(ir, $). Then my, 4(5) is a continuous,
monotonic decreasing function in @iy < 5 < Gmax(¥) which maps that closed interval in one-to-one fashion
onto the closed interval [Yrint, Ymax(P)]- The function on Yy < t < Yrmax(P) whick is inverse to my, 4(s) is
mg, 4 (t). Furthermore, if ¢y < s then

my,¢(s) = my, 4(s) = mf, 4(s),
and if Yrins < t then mg, y(£) = my (1) = mf, 4 (t).

The proof of theorem A 1 is a straightforward application of the preceding lemmas to S (g, ¥)
and S(¢, @), so the details will be omitted. Equally obvious is ’

TuEOREM A 2. Under the hypotheses of theorem A1, if (s,t) e G(¢p, ) then there is a point h in H
such that ¢(h) = s and Y (h) = t.

Proof. The point # was constructed in the proof of lemma A 10.

TueOREM A 3 Under the hypotheses of theorem A1, if ¢int < s < Pmax () then the set
{h: p(h) < s}nf{h:pr(h) <tynH
(i) isempty ift<my 4(5);
(ii) s nom-empty with empty inlerior if ¢ = my, 4(s), and contains only points h with ¢(h) = s and
Y(h) =t
(iii) has non-empty interior if t > my, 4(s).

Proof. Assertion (i) follows immediately from part (v) of lemma A 1, while assertion (iii) follows
from part (i) of lemma A 2. In assertion (ii) the existence of an 4 such that ¢ (%) = s and (k) = ¢
is theorem A 2. Next we show that if ¢ = my, 4(s) then there is no open set U in H where ¢ (k) < s
and (k) < t. If such a set U exists, then the open set U n {A: ¢(h) < s} cannot be empty, because
¢° has no weak local minimum. Then the open set Un {h: ¢(k) < s} n {h: (k) < s} cannot be
empty, because ¥° has no weak local minimum. But then (s, ) €S(¢, ¥), contrary to the hypo-
thesis of assertion (ii). It remains to show that if ¢ = my, 4(s) and @(h) < s and (k) < ¢ then
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¢(h) = sand (k) = t. We cannot have both ¢(£) < s and (k) < ¢ because then (s, ) € S(@, V),
contrary to part (ii) oflemma A 2. But if one of the two equations ¢ (%) = sor (k) = tholds, then
according to theorem A 1 and lemma A 2 so does the other.

Now we must show that the foregoing results are applicable to convexly defined functions.

Definition. Suppose H is a convex subset of a real vector space V and ¢: H—Z%. We say ¢ is
‘strictly convexly defined’ if any s < ¢sup has the following property: if h;e H and ¢(h;) < s,
withz = 1or 2,then ¢(h) < s whenever h is a point between h, and h, on the straightline segment
joining them (i.e. whenever there are positive numbers a; and a, such that a;+oa, = 1 and
h =a,h,+ayh,).

Now we have

LemMa A 11, If ¢: H—> 2 is strictly convexly defined then ¢° has no weak local minima.

Proof. Let h; be in the domain of ¢°. Since ¢(h,) > ¢int, there is a point h, in H where
¢(hy) < ¢(h,). Then the straight line segment joining %, and %, consists of points 42 where
¢(h) < ¢(h,), so h, is not a weak local minimum.

If ¢: H—>Z and : H— % and the domain H is a convex subset of a real vector space, then
evidently in theorems A 1, A 2 and A 3 we can replace the hypothesis that ¢ and ¢ have no weak
local minima by the hypothesis that ¢ and ¢ are strictly convexly defined. This stronger
hypothesis gives us some additional information:

Lemma A 12. Suppose that H is a convex subset of a real vector space and that ¢p: H—> R and : H—> R
are strictly convexly defined. Suppose also that they are both continuous and their either ¢ is yr-compactly
defined or yr is p-compactly defined. Then the hypothesis and conclusions of theorems A1, A2 and A 3 apply
to ¢ and . In addition, if ¢t < s < Pmax () and t = my 4(s) then the set

{h:p(h) <sin{h:y(h) <tinH
contains exactly one point if t = my, 4(s), and this point has ¢p(h) = s, yr(h) = t.

Proof. Everything in lemma A 12 follows immediately from lemma A 11 and theorems A 1, A 2
and A3 except for the assertion that when ¢t < 5 < dmax(¥) and ¢ = m, 4(s) then there is
exactly one point in A which satisfies ¢(h) < s and y(h) < ¢. From theorem A 2 we are assured
of the existence of such a point, and from part (ii) of theorem A 3 we are sure that for any such
point ¢(h) = s and ¥(h) = t. It remains only to prove that there cannot be two such points. In
fact if we had ¢(h;) < s and ¥(h;) <t for i =1 and 2, we could define b = 4(h, +h,) and
conclude that ¢(h) < s and ¥ (h) < t. This contradiction implies h, = h,.

ArPENDIX B. DERIVATIVES ALONG THE TRADEOFF CURVES FOR
RELATIVE ERROR

In order to obtain the expressions (7.37) to (7.42) for w, and w_ and the rates at which s, (6)
and p.(0) approach their limits as 6 approaches 0 or 47, we must calculate the derivatives
0pS+, Opp+ and 0y,a:. We use the notation of §7.

If we differentiate (7.7) with respect to 6 and solve for 9,a, we obtain

0p@ = {(9yt) + 1[(05) cos O —ssin 0] — § (B1)

where y=W1l9,W.a. (B 2)
Next we differentiate (7.8) and (7.9) with respect to 6, obtaining

u.o,a =0, (B 3)

30ys =a.S.9,a. (B 4)
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When we substitute (B1) in these two equations the result is a pair of inhomogeneous linear
equations for 9,5 and 9,¢, whose solution is

Aoys =a.S.(§—5q).u+s(sin6)a.S.h, (B 5)

Aoyt = (cosO)a.S. (yii—@iy) . u+iu.y+is(sinf)u. i, (B 6)

where A =cosO(a.S.h)+1q.1 (B 7)
and a = t§ +scos0ii. (B 8)

If we substitute the expressions (B 5) and (B 6) for 9,5 and 9,¢ back in (B 1), we obtain an explicit
expression for 9,a(60). Then differentiating (7.10) gives

a.(E—p%qq).o,a
oop(o) = LDt (9)
The explicit expressions for ¢,a and 9,p0(60)? in general seem to be extremely complicated, and

are not given here. We do not need them to deduce the identity (7.33). We simply multiply
equation (B4) by 2cos 6, multiply (B9) by 2(q.a)?wsin 0, and add the products. The result is

(q.a)%sin 0 6,[wp(0)?] + cos 0 9ys(0) = 2a.[W —w(sin 0) p?qq]. d,a.
According to equations (7.7) and (7.11), the right-hand side of this equation is 2s(cos ) u. 9,a.
Then (B3) yields (q.@)?sin 08,[wp(0)%] +cos 0.9,5(0) = 0, (B 10)

which is equivalent to (7.33).
A more explicit expression for 9,5 can be obtained by using the facts that

sinfo,W = Wcos0—S, cos@o,W=wE—Wsin0,

and the identity a.S.§—scosf(a.S.h) =sii.q.
This identity can be deduced from (B 8), (7.8), (7.9) and (7.13). The results for 9,s are these:
(sin0) Adys = sa.S. h+(q.i1) (a.S.W.S.a)—(a.S.i1) (a.S.§), (B 11)
(cos0)Aoys = (a.S.G) (a.wE.@t)—(q.it) (a.S. W' wE.a). (B12)

Similar but more complicated expressions for 9,¢, 9,a and 9,p%can be deduced, but we omit them.
Now we can examine the rates of approach to the four limits we need. These four limits are

(1) 0_>Oa a—>ag, $—>3Smin, p2—>p§nax;
(il) 00, a—>ay S$—>5o, P2—>00;

. < 2 .
(iii) 0—>3%m, a-—>ay, S—>35max, P> Pmins
(iv) 0—>3im, a—oo(ag—ay), s>, p*—>pha.

Which of cases (i) and (ii) is assigned to p_ (s) and which is assigned to p_(s) depends on the sign
of q.ag, but the limiting behaviour can be calculated independently of that assignment. Gase (iii)
is always p  (s) and case (iv) is always p_(s).

Case (i): 00, a—>ag.
In this case, W — S, 0, W —>wE, § - S~1.wE.ag, s> Smin, P —> Pmax, i = Gg[smin and ag. S h=0

because of (7.14). Thus

q.ag
= . B 13
A 2Smin ( )

23 Vol. 266, A,
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. ag.wE.ag
Then Adys(0) =0, A9yt(0) = =27~
25min
Y 30“(0) =-—wS'. (E_pfnu»x qq) -Gs. (B 14)
2 —1 2
Thercfore 19,p(0)2 = — s’ (I":--_p!'.?““'qg.).(;l_saﬂjéE..p._max 99)-as (B 15)
s

It follows from (B 14) and (B 15) that p(s) has a vertical tangent at s = smin when a = ag.

Case (ii): 6 >0,a—>a,,

As in case (1), W— S, 0, W—wE and ii—>ag/smim. However, ¥+ S1.wE.a,, s—s,, and

p—oo. If we define e —a Ea (B 16)
. €
then from (7.32) we have lim 0p(0) = ATV B 17
en ( ) P p(7) |q.8,a(0)] (B17)
The problem is to evaluate q.9,a(0) in case (ii).
Because q.a,, = 0, we have A(0) = — fl;as’ (B 18)
25min
so, from (B 5), 09$(0) = 2wek, (B 19)
9.2
From (B 6), 8yt(0) = — UG- E-an—265) (B 20)

q.ag

Then, from (B1) and the two equations immediately following (7.27) we infer that when

a(0) =a,, 2
q.9,a(0) = —w—fw(_%*%). (B 21)
© min
. . So—S§
Thus in case (ii lim p(0) = 2 -min B 22
s in case (ii) lim p(0) we.]q.as| ( )

Case (iil): 0> m a,—>ay,

In this casc,
~ 2 ~
W — wEa 80 W—— S> u-— aE/w+ Cminy S >3Smax, L > Pmin,

and §—>E7'.qlw, = ay(q.a5)[w e

From (B 10) we infer immediately that

8,lp. (3m)%] = o. (B 23)
q.ag
17) = E
From (B 7), A, (3m) Sw_ et (B 24)
while w,y=—E1.8.a,.
Then a straightforward calculation reduces (B 5) to
3w, 0,5, (3m) = 00 8. E71.8. a5+ 5 (Smax— 2a5. S.ag). (B 25)

It follows from (B 23) and (B 25) that p,(s) has a horizontal tangent at 5 = §inax.

Case (iv): 0 —%m, a—oo(ag—ay).

This case has already been treated completely in cquation (7.26).
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AprrENDIX C. COMPARISON OF RELATIVE WITH ABSOLUTE ERRORS

Absolute errors are so much easier to use than relative errors that we prefer the former when
both lead to essentially the same information about %-acceptable Earth models. In the present
appendix we study conditions which assure that minimizing either relative or absolute errors
will indeed yield essentially the same information.

Any a in # which satisfies u.a = 1 produces, via (2.5), an averaging kernel 4. With u and q

(my, 4) = q.a, (C1)
¢@?=a.E.a, p(a)®=ea)?(q.a) (C2)

defined in § 2 we have

By definition, €(s) is the minimum of e(a) and p(s) is the minimum of p(@) when a is constrained
to liein &(u, S, s). Let a(s) be the point in & (u, §, s) such that e(s) = e(a(s)), and let d(s) be the
pointin & (u, S, ) such that p(s) = p(d(s)). Let A,and A, be the averaging kernels (2.5) produced
by a(s) and d’(‘f). Deﬁne 6(0(5))

* —_
PP = 1g.a()]

Both (my, A,) and {my, A, are measureable properties of the Earth; both are localized averages

. (G3)

of my with the same spread from 7, namely s. The average {(my, 4,y is known with the smaller
absolute error and the average {(mg, A,> is known with the smaller relative error.

A measurement of the velocity of light ¢z vacuo with an error of + 100 cm s~ would be regarded
by almost everyone as ‘more accurate’ than a measurement of the velocity of sound in sea water
with an error of + 1cms™, because the former error is three parts in 10° while the latter is one
part in 105, The figure of merit for the accuracy of a measurement of a physical quantity p is not
the absolute error Ap but the relative error Ap/p. From this point of view, {my, A,y is more
‘accurately’ known than {(mg, 4,). Since both are estimates of a local average of my at the same
position 7, and with the same spread s, in principle 4, is preferable to 4, as an averaging kernel.
However, the added labour of computing A, is justified only if the relative error p(s) in {my, 4,
is significantly smaller than the relative error p*(s) in {my, A).

When s = smi, we have d(s) = a(s) = ag, so p(s) = p*(s). The question is, how small must
s — smin be to insure that p*(s) —p(s) is only a small fraction of p*(s) or p(s). It is always possible
by accident that p*(s) = p(s), so we seek only a sufficient condition to assure the inequality

p*(s) = pls) < pls).
First we verify that 0 < p*(s) —p(s). (C4)
This inequality is an immediate consequence of the definition of p(s), which requires that

p(s) < e(a)/|q.a| for any a, and in particular for a = a(s). .
Next we need an upper bound on p*(s) — p(s). The definition of ¢(s) requires that

e(s)? < d(s). E.d(s),

e(s)® q.-4(5)\* e
and therefore iq.a(5)* < (q.a(s) p(s). (C5)
If we define ¢(s) and Q(s) as, respectively, the minimum and maximum values of |q.a| when a
is confined to &'(u, S, s), then we have from (C5)
Q)
*(s) < === p(s).
p6) < 2ol

23-2
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190 G. BACKUS AND F. GILBERT
Therefore 0 < p*(s) —p(s) < [Q—(%(:)g——ﬁ}p(s) (C6)

It remains to calculate ¢(s) and Q(s). These two extremal values of g.a in &(u, S,s) are
assumed at two points @, and @, on 96 (u, 8, 5), where the boundary is tangent to the two hyper-
planes q.a = ¢(s) and q.a = Q(s). The argument is the now familiar one based on convexity,
and will be omitted. It follows that the equations

S.a=aq+pu, ua=1 s=a.S.a (CT)

have a solution a,, «,, B, and another a,, «,, fo. If we define § = S-1.q, it = $~'.u and
h = (4@t — @) .u, then (C'7) imply that

a="%% (C8)
u.ii
and o(h.S.h)+2u(t. 8. h)+ii.S.ii—s(u.i)? = 0. (C9)
The two roots of (G 9) are «, and a,, and
B _q.ii+oa,q.h
q(‘y) —q'aq_ u.ii s
B _q.iitayq.h
Q(‘y)_q‘aQ— u.i .
To solve (C9) we first observe the following facts:
2
a.S.di= ", @.8h=0 B.Sh= L%
Smin Smin (5 s -Ymin)
From the resulting o, and a, we obtain
q(s) = q.a5(1-£(5)), Qs) = q.a5(1+{(s))
— Smin \ ¥
where g(s) = (gml‘—) . (C10)
Soo — Smin,
p¥(s)—p(s) o 26(s)
Therefore 0< < . C11
o) STl (e

For purposes of illustration, suppose we are willing to accept {mg, 4, rather than {my, 4,> as
long as the relative error of the former is no more than 10 9%, larger than the relative error of the
latter. To be sure that we have p*(s) < 1.1p(s) we must require

§ = Smin 1
Soo— Smin 441"

28(s)
0<- < 0.1 < < <
1=205) 0.1 or 0<{(s) <1/21, or 0 <

ApPENDIX D. CALCULATION OF pp;; AND PROOF OF THEOREM 2

For any vectors fand gin #V we define f. g by (4.1). We suppose that E: %V — %% is symmetric
and positive definite and that # and q are two linearly independent vectors in ¥, We seek the
number p,,, such that in the (N —1)-dimensional space # (u) the (N — 2)-dimensional surface
0% (u, q, E, p?) is an ellipsoid when p < p,,,, a paraboloid when p = pp,., and a hyperboloid of
two sheets when p > pp...
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We abbreviate the inner product (f, g)z =f. E. g as (f, g). The idea is to work entirely in the
geometry defined on #Z¥ by the inner product (f, g), because in this geometry 0% (q, E, p?) is a
right circular cone. We define U = E-'.u, U = (U, U)}, U = U-'U, and Q = E-'.q. Then
a vector a is in 9% (u, q, E, p?) if and only if

(Uya) =1 (D1)
and (a,a) = (pQ,a). (D 2)

Our first step is, roughly speaking, to translate 9% (u, q, E, p?) rigidly down from J#(u) to

Hy(u), so as to exploit the fact that S (u) is an (N —1)-dimensional subspace of #%. The

condition that a vector b lie in 5% (1) is (U, b) = 0. Therefore, if @ is any vector in Z% there is

a unique vector b in %, (u) such that
a=(a,U)U+b.

Evidently b is the perpendicular projection of @ onto #,(u). If a is in 5 (u) then (a, U) = U-'so
a=U"'U+b. (D 3)

Equation (D 3) establishes a one-to-one correspondence between the points a@ in 5 (u) and the
points b in 5 (u). The correspondence really consists in translating 5 (1) perpendicularly to
itself through the vector displacement U1 U.

If we substitute (D 3) in (D 2) we obtain

(b, b)+ U2 = [U(pQ, U) + (pQ, b)]. (D4)

A point ain #V is in 0% (u, q, E, p?) if and only if it has the form (D 3) where b is in J,(u) and
satisfies (D 4). Now we define P = Q — (Q, U) U. Since q and u are linearly independent, so are
Q and U. Therefore P + 0, and if we define P = (P, P)* we have P & 0. Then we can define
P = P-1P. Now P lies in #(u) and for any vector b in (1) there is a unique vector b, such

that b= (bP)Pib, (D 5)

and (P,b,) = 0. (D 6)
With the help of (D 5) and (D 6) we can rewrite (D 4) as

(b, B,) + (1—p2P?) (P, b)—2(pPU-1(Q, 0)] (B, b) = U[(pQ, 0)*~1]. (D7)

If p? = P2, then (D7) is clearly the equation of a paraboloid of revolution whose vertex is at

1 [ P (Q,f])JP

*Toul(Q, 0y P
and whose axis consists of the vectors ¢P with ¢ > (P, b,).
When p? + P2, we define J = [B;g—(_(—);; ZIIAQ) (D8)
and write (D7) as
(by, b,) +(1—pP) [(P, b)*—2J (P, b)] = U—*[(pQ, U)2~1].
Completing the square yields
(., 5.) + (1P [(B, b) ~ T2 =212 Os (D9)

T U (1—p2P?)’
where we have used the fact that P2+ (Q, U)2 = (Q, Q).
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The easiest way to analyse (D 9) is to introduce an orthonormal basis Py, ..., Py_, in J,(u)

with P; = P and to write b as No1
i=1

Then (P, b) = b, and (b, b,) = b2+ ... +b%_;. Evidently the surface in 5 (u) described by
(D 9) contains no real points unless p* > (Q, Q)1 If p2 = (Q, Q) then that ‘surface’ consists
of the single point JP. If .
T LT a— D10
©.0) < < 7,P) D1)
then (D 9) describes an ellipsoid of revolution in () with centre at JP and axis parallel to P.
If p% > (P, P)~! then (D 9) describes a hyperboloid of revolution with two sheets, having its
centre at JP and its axis parallel to P. ,

We are already familiar with (Q, Q); itis ¢. E-1.q, or pg;2. It remains to evaluate the axis P
and (P, P). But (P, P) = (Q, Q) —(Q, U)2or

_ (u.E1.q)?
— 1 — —
(P,P)=q.E1.q u Eiu "
Thus (P, P-1) is p2,,, as given by (6.16).
The axis Pis Q — (Q, U) U, so
p_p1 g wE'qL,
P=E1lgq u_.E—l.uE .u,

or P = (u.E™1.q) (ay—ag). The proof of theorem 2 is complete.
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